Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Triết Phan
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 3 2022 lúc 20:18

a: Khi m=1 thì phương trình sẽ là \(x^2-3x-5=0\)

\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-5\right)=9+20=29\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{29}}{2}\\x_2=\dfrac{3+\sqrt{29}}{2}\end{matrix}\right.\)

b: \(\text{Δ}=\left(2m+1\right)^2-4\left(-m-4\right)\)

\(=4m^2+4m+1+4m+16\)

\(=4m^2+8m+17\)

\(=4m^2+4m+4+13\)

\(=\left(2m+2\right)^2+13>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Nguyễn Huy Tú
1 tháng 3 2022 lúc 20:19

a, Thay m =1 ta đc 

\(x^2-3x-5=0\)

\(\Delta=9-4\left(-5\right)=9+20=29>0\)

Vậy pt luôn có 2 nghiệm pb 

\(x=\dfrac{3\pm\sqrt{29}}{2}\)

b, Ta có \(\Delta=\left(2m+1\right)^2-4\left(-m-4\right)=4m^2+4m+1+4m+16\)

\(=4m^2+8m+16+1=4\left(m^2+2m+4\right)+1=4\left(m+1\right)^2+13>0\)

vậy pt luôn có 2 nghiệm pb 

Nguyễn acc 2
1 tháng 3 2022 lúc 20:20

a, Thay m=1 vào pt ta có:
\(x^2-\left(2.1+1\right)x-1-4=0\\ \Leftrightarrow x^2+3x-5=0\)

\(\Delta=3^2-4.1.\left(-5\right)=9+20=29\)

\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{29}}{2}\\x_2=\dfrac{-3+\sqrt{29}}{2}\end{matrix}\right.\)

b, Ta có: 

\(\Delta=\left[-\left(2m+1\right)\right]^2-4.1.\left(-m-4\right)\\=\left(2m+1\right)^2+4\left(m+4\right)\\ =4m^2+4m+1+4m+16\\ =4m^2+8m+17\\ =4\left(m^2+2m+1\right)+13\\ =4\left(m+1\right)^2+13>0 \)

Vậy pt luôn có 2 nghiệm phân biệt

Bach Thi Anh Thu
Xem chi tiết
Emm Băng
Xem chi tiết
Nguyễn Huy Tú
19 tháng 4 2021 lúc 18:28

a, Thay m = 0 vào phương trình trên ta được 

\(x^2-2x-3=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=3\)

Vậy với m = 0 thì x = -1 ; x = 3 

 

Thầy Cao Đô
Xem chi tiết
Nguyễn Tất Đạt
17 tháng 5 2021 lúc 21:24

1. \(\left|\frac{2x^2-x}{3x-4}\right|\ge1\) Điều kiện: \(x\ne\frac{4}{3}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{2x^2-x}{3x-4}\ge1\\\frac{2x^2-x}{3x-4}\le-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{x^2-2x+2}{3x-4}\ge0\\\frac{x^2+x-2}{3x-4}\le0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x>\frac{4}{3}\\x\in(-\infty;-2]U[1;\frac{4}{3})\end{cases}}\Leftrightarrow x\in(-\infty;-2]U[1;+\infty)\backslash\left\{\frac{4}{3}\right\}\)

2.\(\hept{\begin{cases}x^2\le-2x+3\left(1\right)\\\left(m+1\right)x\ge2m-1\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow x^2+2x-3\le0\Leftrightarrow-3\le x\le1\)

+) Nếu \(m=-1\) thì (2) vô nghiệm, suy ra \(m\ne-1\)

+) Nếu \(m>-1\) thì \(\left(2\right)\Leftrightarrow x\ge\frac{2m-1}{m+1}\)

Hệ BPT có nghiệm duy nhất \(\Leftrightarrow\frac{2m-1}{m+1}=1\Leftrightarrow m=2>-1\)

+) Nếu \(m< -1\)thì \(\left(2\right)\Leftrightarrow x\le\frac{2m-1}{m+1}\)

Hệ BPT có nghiệm duy nhất \(\Leftrightarrow\frac{2m-1}{m+1}=-3\Leftrightarrow m=-\frac{2}{5}< -1\)

Vậy \(m=\left\{\frac{-2}{5};2\right\}\)

Khách vãng lai đã xóa
Nguyễn VIP 5 sao
19 tháng 5 2021 lúc 21:40

1. |2x2−x3x−4 |≥1 Điều kiện: x≠43 

⇔[

2x2−x3x−4 ≥1
2x2−x3x−4 ≤−1

⇔[

x2−2x+23x−4 ≥0
x2+x−23x−4 ≤0

⇔[

x>43 
x∈(−∞;−2]U[1;43 )

⇔x∈(−∞;−2]U[1;+∞)\{43 }

2.{

x2≤−2x+3(1)
(m+1)x≥2m−1(2)

(1)⇔x2+2x−3≤0⇔−3≤x≤1

Khách vãng lai đã xóa
Phạm Hữu Ngọc Minh
18 tháng 9 2021 lúc 9:23

\Leftrightarrow \left[\begin{aligned}&{x>\dfrac{4}{3} } \\ &{1\le x<\dfrac{4}{3} } \\ &{x\le -2} \end{aligned}\right. .

Tập nghiệm :S=\left(-\infty ;-2\right]\cup \left[1;\dfrac{4}{3} \right)\cup \left(\dfrac{4}{3} ;+\infty \right).

2.

Ta có: \left\{\begin{aligned}&{x^{2} \le -2x+3} \\ &{\left(m+1\right)x\ge 2m-1} \end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&{x^{2} +2x-3\le 0} \\ &{\left(m+1\right)x\ge 2m-1} \end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&{-3\le x\le 1} \\ &{\left(m+1\right)x\ge 2m-1} \end{aligned}\right..

+ Trường hợp 1: m=-1

Hệ BPT trở thành: \left\{\begin{aligned}& {-3\le x\le 1} \\ &{0\ge -3} \end{aligned}\right.. Hệ luôn đúng với \forall x\in \left[-3;1\right].

Vậy m=-1 loại.

+ Trường hợp 2: m>-1

Hệ BPT trở thành: \left\{\begin{aligned}& {-3\le x\le 1} \\ &{x\ge \dfrac{2m-1}{m+1} } \end{aligned}\right..

Hệ có nghiệm duy nhất khi \dfrac{2m-1}{m+1} =1\Leftrightarrow 2m-1=m+1\Leftrightarrow m=2 (nhận).

+ Trường hợp 3: m<-1 Hệ BPT trở thành: \left\{\begin{aligned}& {-3\le x\le 1} \\ &{x\le \dfrac{2m-1}{m+1} } \end{aligned}\right..

Hệ có nghiệm duy nhất khi \dfrac{2m-1}{m+1} =-3\Leftrightarrow 2m-1=-3m-3\Leftrightarrow m=\dfrac{-2}{5} (loại). Vậy m=2 hệ có nghiệm duy nhất.

Khách vãng lai đã xóa
Lê Mai
Xem chi tiết
bvdfhgjk
Xem chi tiết
bvdfhgjk
Xem chi tiết
Giản Nguyên
2 tháng 3 2018 lúc 22:35

câu 1,

a, 2(m-1)x +3 = 2m -5

<=> 2x (m-1) - 2m +8 = 0  (1)

Để PT (1) là phương trình bậc nhất 1 ẩn thì:  m - 1 \(\ne\)0 <=> m\(\ne\)1

b, giải PT: 2x +5 = 3(x+2)-1

<=> 2x + 5 -3x -6 + 1 =0

<=> -x = 0

<=>  x = 0

Thay vào (1) ta được: -2m + 8 =0

<=> -2m = -8

<=> m = 4 (t/m)

vậy m = 4 thì pt trên tương đương.................

Hạ Uy
Xem chi tiết
Cố Tử Thần
Xem chi tiết
Hoàng Đạt
17 tháng 5 2019 lúc 22:23

Em yêu ơi ! Ở đây có ít người lớp 9 lắm , em lên hh sẽ có giáo viên giảng cho 

Hoàng Đạt
17 tháng 5 2019 lúc 22:24

lên Học24h 

Cố Tử Thần
17 tháng 5 2019 lúc 22:25

em yêu ơi?????????????????

xưng hô vậy hả thằng kia

ai mà dám hỗn láo vậy