Cho x, y, z thuộc R. Chứng minh 4x² + 3y² + 5z² lớn hơn hoặc bằng 2xy + 4yz - 6xz.
Tìm x;y;z biết
\(x^2+3y^2+5z^2+2xy-4yz-4x-4y-6z+7\le0\)
=(x2+2xy+y2)+(y2-4yz+4z2)+(y2-2y+1)+(z2-2z+1)-4x-2y-4z+5
=(x+y)2-4(x+y)+4 +(y-2z)2+2(y-2z)+1 +(y-1)2+(z-1)2
=(x+y-2)2+(y-2z+1)2+(y-1)2+(z-1)2\(\ge0\)\(\forall_{x,y,z}\)
Lai co (x+y-2)2+(y-2z+1)2+(y-1)2+(z-1)2\(\le\)0
=> (x+y-2)2+(y-2z+1)2+(y-1)2+(z-1)2=0
Dau = xay ra khi x=y=z=1
Cho x,y,z thuộc N*;P=5x/y+5y/z+5y/x+5z/y.
Chứng tỏ P lớn hơn hoặc bằng 20
a) x/3 = y/6 = z/5 và 2xy - 3y^2 - 4yz = 24
b) x^2/4 = y^2/9 = z^2/25 và 2x + 3y -5z = (-12)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{6}=\frac{z}{5}=\frac{2xy-3y^2-4yz}{2.3.6-3.6^2-4.6.5}=\frac{24}{-192}=\left(-\frac{1}{8}\right)\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\left(-\frac{1}{8}\right)\Rightarrow x=\left(-\frac{3}{8}\right)\\\frac{y}{6}=\left(-\frac{1}{8}\right)\Rightarrow y=\left(-\frac{3}{4}\right)\\\frac{z}{5}=\left(-\frac{1}{8}\right)\Rightarrow z=\left(-\frac{5}{8}\right)\end{cases}}\)
Vậy ....
\(b,\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{2x+3y-5z}{2.2+3.3-5.5}=\frac{\left(-12\right)}{\left(-12\right)}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=1\Rightarrow x=2\\\frac{y}{3}=1\Rightarrow y=3\\\frac{z}{5}=1\Rightarrow z=5\end{cases}}\)
Vậy ...
cho x,y,z>0 ; x nhỏ hơn hoặc bằng y nhỏ hơn hoặc bằng z
Chứng minh 4x2+4y2 nhỏ hơn hoặc bằng xy+yz+xz+5z2
Chứng minh rằng :
a) x^2+y^2+z^2 lớn hơn hoặc bằng xy+yz+zx
b) x^2+y^2+z^2 lớn hơn hoặc bằng 2xy-2xz+2yz
a/ a2 + b2 + c2 \(\ge\)ab + bc + ca
<=> 2(a2 + b2 + c2) \(\ge\)2(ab + bc + ca)
<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2 \(\ge0\)
<=> (a - b)2 + (b - c)2 + (c - a)2 \(\ge0\) (đúng)
=> ĐPCM
b/ a2 + b2 + c2 \(\ge\) 2ab - 2ac + 2bc
<=> a2 + b2 + c2 + 2( - ab + ac - bc)\(\ge\) 0
<=> (a - b + c)2 \(\ge0\)(đúng)
=> ĐPCM
vói mọi x,y,z chứng minh rằng
b) x^2 + y^2 + z^2 lớn hơn hoặc bằng 2xy - 2xz + 2yz
c) x^2 + y^2 + z^2 +3 lớn hơn hoặc bằng 2 ( x+y +z )
--Giúp mình nhé ! cảm ơn nhiều ;) :*
cho x,y thuộc (0:1)
chứng minh rằng (1 + x )2 lớn hơn hoặc bằng 4x2
chứng minh rằng (1 + x + y)2 lớn hơn hoặc bằng 4(x2+y2)
1/
Xét hiệu $(x+1)^2-4x^2=(x+1)^2-(2x)^2=(x+1-2x)(x+1+2x)$
$=(1-x)(3x+1)$
Do $x\in (0;1)$ nên $1-x>0; 3x+1>0$
$\Rightarrow (x+1)^2-4x^2>0\Rightarrow (x+1)^2> 4x^2$
2/
Xét hiệu:
$(1+x+y)^2-4(x^2+y^2)=x^2+y^2+1+2x+2y+2xy-4x^2-4y^2$
$=1+2x+2y+2xy-3x^2-3y^2$
$=2x(1-x)+2y(1-y)+1+2xy-x^2-y^2$
Vì $x,y\in (0;1)$ nên:
$2x(1-x)>0$
$2y(1-y)>0$
$(x-1)(y-1)>0\Rightarrow xy+1> x+y=x.1+y.1> x^2+y^2$
$\Rightarrow 1+xy-x^2-y^2>0$
$\Rightarrow 1+2xy-x^2-y^2>0$
Suy ra: $2x(1-x)+2y(1-y)+1+2xy-x^2-y^2>0$
$\Rightarrow (1+x+y)^2> 4(x^2+y^2)$
Cho 4x-5y/3=5z-3x/4=3y-4z/5 chứng minh x/5=y/4=z/3
Lời giải:
\(\frac{4x-5y}{3}=\frac{5z-3x}{4}=\frac{3y-4z}{5}\)
\(=\frac{3(4x-5y)}{9}=\frac{4(5z-3x)}{16}=\frac{5(3y-4z)}{25}\)
\(=\frac{12x-15y}{9}=\frac{20z-12x}{16}=\frac{15y-20z}{25}=\frac{12x-15y+20z-12x+15y-20z}{9+16+25}=0\)
\(\Rightarrow 4x-5y=5z-3x=3y-4z=0\)
\(\Rightarrow 4x=5y; 3y=4z\Rightarrow \frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
cho 4x-5y/3=5z-3x/4=3y-4z/5 chứng minh x/5=y/4=z/3