(2-x) (2x^2-5x+2) ≥0
Giai phường trình sau:
a, \(3x^2+2x-1=0\) e, \(4x^2-12x+5=0\) i,\(2x^2+5x-3=0\)
b,\(x^2-5x+6=0\) f, \(2x^2+5x+3=0\) j,\(x^2+6x-16=0\)
c,\(x^2-3x+2=0\) g,\(x^2+x-2=0\)
d,\(2x^2-6x+1=0\) h, \(x^2-4x+3=0\)
a) Ta có: \(3x^2+2x-1=0\)
\(\Leftrightarrow3x^2+3x-x-1=0\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{-1;\dfrac{1}{3}\right\}\)
b) Ta có: \(x^2-5x+6=0\)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy: S={2;3}
c) Ta có: \(x^2-3x+2=0\)
\(\Leftrightarrow x^2-x-2x+2=0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy: S={1;2}
d) Ta có: \(2x^2-6x+1=0\)
\(\Leftrightarrow2\left(x^2-3x+\dfrac{1}{3}\right)=0\)
mà \(2\ne0\)
nên \(x^2-3x+\dfrac{1}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{23}{12}=0\)
\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=\dfrac{23}{12}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{\sqrt{69}}{6}\\x-\dfrac{3}{2}=\dfrac{-\sqrt{69}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9+\sqrt{69}}{6}\\x=\dfrac{9-\sqrt{69}}{6}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{9+\sqrt{69}}{6};\dfrac{9-\sqrt{69}}{6}\right\}\)
e) Ta có: \(4x^2-12x+5=0\)
\(\Leftrightarrow4x^2-10x-2x+5=0\)
\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{5}{2};\dfrac{1}{2}\right\}\)
1) (x+6)(3x-1)+x+6=0
2) (x+4)(5x+9)-x-4=0
3)(1-x)(5x+3)÷(3x-7)(x-1)
4)2x (2x-3)=(3-2x)(2-5x)
5)(2x-7)^2-6(2x-7)(x-3)=0
6)(x-2)(x+1)=x^2-4
7) x^2-5x+6=0
8)2x^3+6x^2=x^2+3x
9)(2x+5)^2=(x+2)^2
1) (x+6)(3x-1)+x+6=0
⇔(x+6)(3x-1)+(x+6)=0
⇔(x+6)(3x-1+1)=0
⇔3x(x+6)=0
2) (x+4)(5x+9)-x-4=0
⇔(x+4)(5x+9)-(x+4)=0
⇔(x+4)(5x+9-1)=0
⇔(x+4)(5x+8)=0
3)(1-x)(5x+3)÷(3x-7)(x-1)
=\(\frac{\left(1-x\right)\left(5x+3\right)}{\left(3x-7\right)\left(x-1\right)}=\frac{\left(1-x\right)\left(5x+3\right)}{\left(7-3x\right)\left(1-x\right)}=\frac{\left(5x+3\right)}{\left(7-3x\right)}\)
bai 2
a)(5x+1)^2_(5x-3)(5x+3)=0
b)(x+3)(x^2-3x+9)-x(x-2)(x+2)=0
c)3x(x-2)-x+2=0
d)x(2x-3)-2(3-2x)=0
a) (5x+1)2 - (5x-3).(5x+3) = 0
25x2 + 10x + 1 - 25x2 + 9 = 0
10x + 10 = 0
10.(x+1) = 0
=> x + 1 = 0 => x = - 1
b) (x+3).(x2 - 3x + 9) - x.(x-2).(x+2) = 0
x3 + 27 - x.(x2 - 4) = 0
x3 + 27 - x3 + 4x = 0
27 + 4x = 0
4x = - 27
x = -27/4
c) 3x.(x-2) - x + 2= 0
3x.(x-2) - (x-2) = 0
(x-2).(3x-1) = 0
=> x - 2 =0 => x = 2
3x-1 = 0 => 3x = 1 => x = 1/3
d) x.(2x-3) - 2.(3-2x) = 0
x.(2x-3) + 2.(2x-3) = 0
(2x-3).(x+2) = 0
=> 2x - 3 = 0 => 2x = 3 => x = 3/2
x+ 2 = 0 => x = -2
KL:...\
giải các phương trình
a) 2(x-2)+5x(x-1)=5x
b) 2x(x-3)+5(x-3)=0
c) x^2-5x+6=0
d) (x^2-4)-(x-2)(3-2x)=0
e)2x^3+6x^2=x^2+3x
f)(2x+5)^2=(x+2)^2
Bài làm
b) 2x( x - 3 ) + 5( x - 3 ) = 0
\(\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+5=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{5}{2}\\x=3\end{matrix}\right.\)
Vậy tập nghiệm S = { -5/2; 3 }
c) x2 - 5x + 6 = 0
<=> x2 - 2x - 3x + 6 = 0
<=> x( x - 2 ) - 3( x - 2 ) = 0
<=> ( x - 2 )( x - 3 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy tập nghiệm S = { 2; 3 }
d) ( x2 - 4 ) - ( x - 2 )( 3 - 2x ) = 0
<=> ( x - 2 )( x + 2 ) - ( x - 2 )( 3 - 2x ) = 0
<=> ( x - 2 )( x + 2 - 3 + 2x ) = 0
<=> ( x - 2 )( 3x - 1 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy S = { 2; 1/3 }
a) 2(x - 2) + 5x(x - 1) = 5x
⇔ 2x - 4 + 5x2 - 5x = 5x
⇔ -3x - 4 + 5x2 = 5x
⇔ 3x + 4 - 5x2 + 5x = 0
⇔ 8x + 4 - 5x2 = 0
⇔ 5x2 - 8x - 4 = 0
⇔ 5x2 + 2x - 10x - 4 = 0
⇔ x(5x + 2) - 2(5x + 2) = 0
⇔ (5x + 2)(x - 2) = 0
⇔ \(\left\{{}\begin{matrix}5x+2=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x=-2\\x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-2}{5}\\x=2\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là S = \(\left\{\frac{-2}{5};2\right\}\)
Các bạn giúp mình nhé càng nhanh càng tốt nhà
(5x-1). (2x+3)-3. (3x-1)=0
x^3 (2x-3)-x^2 (4x^2-6x+2)=0
x (x-1)-x^2+2x=5
(3x+2)(x-1)-3 (5x+2)+5 (11-4x)=25
8 (x-2)-2 (3x-4)=25
(3x+4). (5x-1)+(5x+2). (1-3x)+2=0
(5x-1). (2x+7)-(2x-3). (5x+9)
4 (x-1). (X+5)-(x+5). (X+2)=3. (X-1)(x+2)
2x^2+3 (x-1). (X+1)=5x(x+1)
4. (18-5x)-12 (3x-7)=1825. (2x-16)-6 .(x+4)
1/2x. (2/5-4x)+(2x+5).x=-13/2
Nhiều các bạn giả đùm mình nha
Thanh nhiều
+) (5x-1). (2x+3)-3. (3x-1)=0
10x^2+15x-2x-3 - 9x+3=0
10x^2 +8x=0
2x(5x+4)=0
=> x=0 hoặc x= -4/5
+) x^3 (2x-3)-x^2 (4x^2-6x+2)=0
2x^4 -3x^3 -4x^4 + 6x^3 - 2x^2=0
-2x^4 + 3x^3-2x^2=0
x^2(-2x^2+x-2)=0
-2x^2(x-1)^2=0
=> x=0 hoặc x=1
+) x (x-1)-x^2+2x=5
x^2 -x -x^2+2x=5
x=5
+) 8 (x-2)-2 (3x-4)=25
8x - 16-6x+8=25
2x=33
x=33/2
Đề: Tìm x
a)2x.(3x+5)-x.(6x-1)=33 k)5(x+3)-2x(x+3)=0
b)x(3x-1)+12x-4=0 i)5x(x-2)-(2-x)=0
c)5x(2x+1)-12x-6=0 m)x(x-1)-2(1-x)=0
d)x3-5x2+4x-20=0
e)2x3-5x2+2x-5=0
g)(x-2)3-x(x+1).(x-1)+62=5
a)2x.(3x+5)-x.(6x-1)=33
=>\(6x^2+10x-6x^2+x=33\)
=>11x=33
=>x=3
b)x(3x-1)+12x-4=0
=>x(3x-1)+4(3x-1)=0
=>(x-4)(3x-1)=0
=>x-4=0 hoặc 3x-1=0
+)x-4=0 +)3x-1=0
=>x=4 =>x=\(\frac{1}{3}\)
c)5x(2x+1)-12x-6=0
=>10x\(^2\)+5x-12x-6=0
=>10x\(^2\)-7x-6=0
=>(10x\(^2\)+5x)-(12x+6)=0
=>5x(2x+1)-6(2x+1)=0
=>(5x-6)(2x+1)=0
=>\(\left[{}\begin{matrix}5x-6=0\\2x+1=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\frac{6}{5}\\x=\frac{-1}{2}\end{matrix}\right.\)
. Bài 1: Phân tích đa thức thành nhân tử
a; A = x^3-2x^2-5x+6
b; B = x^4+5x^2+6
c; C = x^4-2x^3+2x-1
d; D = x^3+4x^2+5x+2
. Bài 2: Tìm x
a; x^3-9x^2+14x=0
b; x^3-5x^2+8x-4=0
c; x^4-2x^3+x^2=0
d; 2x^3+x^2-4x-2=0
Giải bất phương trình sau : a/ 2x ^ 2 + 6x - 8 < 0 x ^ 2 + 5x + 4 >=\ 2) Giải phương trình sau : a/ sqrt(2x ^ 2 - 4x - 2) = sqrt(x ^ 2 - x - 2) c/ sqrt(2x ^ 2 - 4x + 2) = sqrt(x ^ 2 - x - 3) b/ x ^ 2 + 5x + 4 < 0 d/ 2x ^ 2 + 6x - 8 > 0 b/ sqrt(- x ^ 2 - 5x + 2) = sqrt(x ^ 2 - 2x - 3) d/ sqrt(- x ^ 2 + 6x - 4) = sqrt(x ^ 2 - 2x - 7)
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
A) 2x³+6x²=x²+3x
B) (2x+5)²=(x+2)²
C) x²-5x+6=0
D) (2x-7)²-6(2x-7)(x-3)=0
E) (x-2)(x+1)=x²-4
G) 2x(2x-3)=(3-2x)(2-5x)
H) (1-x)(5x+3)=(3x-7)(x-1)
F) (x+6)(3x-1)+x+6=0
I) (4x-1)(x-3)=(x-3)(5x+2)
K) (x+4)(5x+9)-x-4=0
H) (x+3)(x-5)+(x+3)(3x-4)=0
M) (2x+3)(-x+7)=0
A) 2x³+6x²=x²+3x
B) (2x+5)²=(x+2)²
C) x²-5x+6=0
D) (2x-7)²-6(2x-7)(x-3)=0
E) (x-2)(x+1)=x²-4
G) 2x(2x-3)=(3-2x)(2-5x)
H) (1-x)(5x+3)=(3x-7)(x-1)
F) (x+6)(3x-1)+x+6=0
I) (4x-1)(x-3)=(x-3)(5x+2)
K) (x+4)(5x+9)-x-4=0
H) (x+3)(x-5)+(x+3)(3x-4)=0
c. x^2-5x +6 = 0
<=> x^2 - 5x = -6
<=> - 4x = -6
<=> x= -6/-4
Mình chỉ phân tích đa thức thành nhân tử thôi , phần còn lại bạn tự tính nha keo dài lắm
A) 2x2(x+3) - x(x+3) = 0 <=> x(x - 3)(2x-1)=0
B) (2x+5)2 - (x+2)2=0 <=> (x+3)(3x+7)=0
C) (x2-2x) - (3x-6)=0 <=> (x-2)(x-3)=0
D) (2x-7)(2x-7-6x+18)=0 <=> (2x-7)(-4x+11)=0
E) (x-2)(x+1) - (x-2)(x+2)=0 <=> (x-2)*(-1)=0 <=> x-2=0
G) (2x-3)(2x+2-5x)=0 <=> (2x-3)(-3x+2)=0
H) (1-x)(5x+3+3x-7)=0 <=> (1-x)(8x-4)=0
F) (x+6)*3x=0
I) (x-3)(4x-1-5x-2)=0 <=> (x-3)(-x-3)=0
K) (x+4)(5x+8)=0
H) (x+3)(4x-9)=0
B> <2X+5>2-<X+2>2=0
<2X+5-X-2><2X+X+2>=0
<X+3><3X+7>=0
X+3=0 HOẶC 3X+7=0
X=-3 HOẶC X=-7/3
C>X2-5X+6=0
X2-4X+4-X+2=0
<X-2>2-<X-2>=0
<X-2.><X-3>=0
X-2=0 HOẶC X-3=0
X=2 HOẶC X=3
D> <2X-7><2X-7-6<X-3>>=0
<2X-7><-4X+11>=0
2X-7=0 HOẶC -4X+11=0
X=7/2 HOẶC X=11/4
E><X-2><X+1>=X2-4
<X-2><X+1>-<X2-4>=0
<X-2><X+1>-<X-2><X+2>=0
-X+2=0
X=2
CÒN NHIÊU TỰ LÀM ĐI MỆT WA