Cho S=1+2+22+23+.......+29. So sánh S với 5.28.
Giải giùm mình nhé
Cho S=1+2+22+23+…+29 hãy so sánh S với 5.28
\(S=1+2+2^2+2^3+...+2^9\)
Đặt \(2S=2+2^2+2^3+2^4+...+2^{10}\)
\(2S-S=2^{10}-1\) hay \(S=2^{10}-1< 2^{10}\)
\(\Rightarrow\) \(2^{10}=2^2.2^8< 5.2^8\)
Vậy \(S< 5.2^8\)
\(#Tuyết\)
2S=2+2^2+...+2^10
=>S=2^10-1=1023
5*2^8=256*5=1280
=>S<5*2^8
`@` `\text {Answer}`
`\downarrow`
`S = 1 + 2 + 2^2 + 2^3 + ... + 2^9`
`=> 2S = 2 + 2^2 + 2^3 + ... + 2^10`
`=> 2S - S = (2+2^2 + 2^3 + ... + 2^10) - (1 + 2 + 2^2 + 2^3+...+2^9)`
`=> S = 2^10 - 1`
Mà `2^10 - 1 < 2^10`
`=> S < 2^10 (1)`
Ta có:
`2^10 = 2^7*8`
Mà `5*2^8 = 5* 2 * 2^7 = 10* 2^7`
Vì `10 > 8 => 2^7 * 8 < 2^7 * 10 (2)`
Từ `(1)` và `(2)`
`=> S < 5 * 2^7``.`
S=1+2+22+23+...+29. So sánh S với 5. 28
\(S=1+2+2^2+...+2^9\)
\(S=\dfrac{2^{9+1}-1}{2-1}\)
\(S=2^{10}-1=1023\)
\(5.2^8=5.256=1280>1023\)
\(\Rightarrow S< 5.2^8\)
cho S = 1+2+22+...+29
so sánh s với 5.28
S = 1 + 2 + 22 + ... + 29
=> 2S = 2 + 22 + ... + 210
=> 2S - S = 210 - 1
=> S = 210 - 1
Ta có : 210 = 22.28
=> 22.28 - 1 = 4.28 - 1 < 5.28
Vậy S < 5.28
Cho S=1.20+2.21+3.22+...+2016.22015.
So sánh S với 2015.22016.
Các bạn giải chi tiết giùm mình nhé
so sánh 2 p/s: 23/27 và 22/29
Có : \(S=1+2+2^2+2^3+....+2^{99}\)
\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)
\(\Rightarrow S=2^{100}-1< 2^{100}\)
Vậy \(S< 2^{100}\)
S=1+2+22+23+....+299
⇒2S=2+22+23+....+2100
⇒2S−S=2100-1
S=2100-1
vì 2100 -1<2100
⇒S<2100
So sánh tổng S với 251
S = 1+2+22+23+...+2501+2+22+23+...+250
Mai mk thi r làm bài này Giúp mình với. HELP ME !!! thanks các bạn
có phép trừ ko
nếu ko có thì tổng đó lớn hơn 251
rõ ràng mà
Cho S=1+2+22+...+22005
Hãy so sánh S với 5.22004
( các bạn giải rõ ra giùm mk nhé ! Nếu ai làm nhanh và chính xác nhất mk sẽ tick cho ! )
Gợi ý: Bạn tính 2S sau đó bạn lấy 2S trừ S nhé!!
*Do mình lười ghi quá!! Hihi tk giúp mình với bạn nhé!!*
Cho S = 1 phần 20 + 1 phần 21 + 1 phần 22 + 1 phần 29 . Hãy so sánh S với 1 phần 3
ta thấy \(\frac{1}{20}\)<\(\frac{1}{3}\)
thì \(\frac{1}{20}\)+...+\(\frac{1}{29}\)<\(\frac{1}{20}\)+...+\(\frac{1}{20}\)<\(\frac{1}{3}\)
vậy \(\frac{1}{20}\)+...+\(\frac{1}{29}\)<\(\frac{1}{3}\)