A= 2x^2+ y^2- 2xy- 8x+ 2035
tìm GTLN 2x2+y2-2xy+y+10x+2035
tìm GTLN 2x2+y2-2xy+y+10x+2035
1/ Làm tính nhân
A/ (5x^2 - 2xy^2 + y^2) . ( -x^3 -2x^2y+5xy^2)
B/ (2x -y ) .( 4x^2 + 2xy +y^2) . ( 8x^3 + y^3)
Tìm GTNN của:
A= 2x2 + 2y2 + 2xy - 4x -4xy +16
B= 2x2 + y2 + 2xy - 8x - 6y + 20
C= x2 + 2y2 + 2xy - 8x - 14y + 30
Tính: 8x^3-(2x+y)*(4x^2-2xy+y^2)
8x3-(2x+y).(4x2-2xy+y2)
=\(\left(2x\right)^3-\left(2x+y\right).\left[\left(2x\right)^2-2x.y+y^2\right]\)
= \(\left(2x\right)^3-\left[\left(2x\right)^3+y^3\right]\)
= \(\left(2x\right)^3-\left(2x\right)^3-y^3\)
= -y3
Học tốt !
\(8x^3-\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
\(=8x^3-8x^3-y^3\)
\(=-y^3\)
- Tìm Min
a. A=4x^2 +8x +y^2-4y+20
b. B=2x^2+2xy +5y^2-8x-22y
\(A=4x^2+8x+y^2-4y+20\)
\(A=\left(4x^2+8x\right)+\left(y^2-4y\right)+20\)
\(A=4\left(x^2+2x+1\right)+\left(y^2-4y+4\right)-4-4+20\)
\(A=4\left(x+1\right)^2+\left(y-2\right)^2+12\ge12\forall x,y\)
Do \(4\left(x+1\right)^2\ge0\forall x;\left(y-2\right)^2\ge0\forall y\)
Dấu "=" Xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Vậy Min A=12 <=>\(\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Tìm GTNN của các biểu thức :
a, P=2x^2+y^2-2xy-2x+2015
b, Q= x^2=2y^2-x+3y với x-2y=2
c, B=3x^2+y^2-8x+2xy+16
a) ... = (x^2 -2xy + y^2)+(x^2 -2x+1)+2014=(x-y)^2 + (x-1)^2 +2014 >= 2014
Đăngt thức xay ra khi x=y=1
Rút gon phân thức a)8x^3+y^3/y^3+2xy^2+y^2-4x^2 b)x^2-2x-8/2x^2+9x+10 c)6x-x^2-5/5x^6-x^7. d)x^3+64/2x^3-8x^2+32x. e) x^2+3xy+2y^2/x^3+2x^2y-xy^2-2y^3
Tìm giá trị nhỏ nhất của biểu thức:
\(A=2x^2+y^2+8x-2xy-2y+1988\)
\(A=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+x^2+6x+9+1978\)
\(=\left(x-y\right)^2+2\left(x-y\right)+1+\left(x+3\right)^2+1978\)
\(=\left(x-y+1\right)^2+\left(x+3\right)^2+1978\ge1978\)
\(A_{min}=1978\) khi \(\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)