Cho 2 góc nhọn α, β có \(\tan\alpha=\frac{1}{2}\), \(tan\beta=\frac{1}{3}\)
a) Tính \(\tan\left(\alpha+\beta\right)\)
b) Tính α + β
Cho ΔABC có ba góc nhọn, BC = a, \(\widehat{B}=\alpha\), \(\widehat{C}=\beta\), đường cao AH.
a) CM: \(CH=\frac{a.\tan\alpha}{\tan\alpha+\tan\beta}\)
b) CM: \(\frac{1}{AH}=\frac{1}{a.\tan\alpha}+\frac{1}{a.\tan\beta}\)
f) Cho α, Blà hai góc nhọn. Chứng minh rằng:
\(\cos^2\alpha-\cos^2\beta=\sin^2\alpha-\sin^2\beta=\dfrac{1}{1+\tan^2\alpha}-\dfrac{1}{1+tan^2\beta}\)
Đề đúng: \(cos^2\alpha-cos^2\beta=sin^2\beta-sin^2\alpha=\dfrac{1}{1+tan^2\alpha}-\dfrac{1}{1+tan^2\beta}\)
Áp dụng công thức: \(sin^2x+cos^2x=1\Rightarrow cos^2x=1-sin^2x\)
Ta có:
\(cos^2\alpha-cos^2\beta=\left(1-sin^2\alpha\right)-\left(1-sin^2\beta\right)=-sin^2\alpha+sin^2\beta=sin^2\beta-sin^2\alpha\) (1)
Lại có:
\(cos^2\alpha-cos^2\beta=\dfrac{cos^2\alpha}{1}-\dfrac{cos^2\beta}{1}=\dfrac{cos^2\alpha}{sin^2\alpha+cos^2\alpha}-\dfrac{cos^2\beta}{sin^2\beta+cos^2\beta}\)
\(=\dfrac{\dfrac{cos^2\alpha}{cos^2\alpha}}{\dfrac{sin^2\alpha}{cos^2\alpha}+\dfrac{cos^2\alpha}{cos^2\alpha}}-\dfrac{\dfrac{cos^2\beta}{cos^2\beta}}{\dfrac{sin^2\beta}{cos^2\beta}+\dfrac{cos^2\beta}{cos^2\beta}}=\dfrac{1}{tan^2\alpha+1}-\dfrac{1}{tan^2\beta+1}\) (2)
(1);(2) suy ra đpcm
Cho 2 góc AOx và BOx không kề nhau.
a)Vẽ hình biết số đo góc AOx=38 độ và góc BOx=112 độ. Trong ba tia OA,OB,Ox;tia nào nằm giữa 2 tia còn lại? Vì sao?
b)Tính góc AOB?
c) Vẽ tia phân giác OM của góc AOB. Tính góc MOx?
d)Cho góc AOx=$\alpha$α và BOx =$\beta$β,trong đó O<$\alpha+\beta$α+β<180 độ và \(\alpha#\beta\) Tìm điều kiện giữa $a,\beta$a,β để tia OA nằm giữa 2 tia OB và OX. Tính số đo góc MOx theo $\alpha,\beta$
Cho \(0< \alpha\); \(\beta< \frac{\pi}{2}\); \(\alpha+\beta=\frac{\pi}{4}\) và \(tan\alpha.tan\beta=3-2\sqrt{2}\)
a) Tính gtri của \(A=tan\left(\alpha+\beta\right)\)
b) Tính gtri của \(B=tan\alpha+tan\beta\)
c) TÍnh \(tan\alpha\) và \(tan\beta\). Suy ra \(\alpha\) và \(\beta\)
\(A=tan\left(a+b\right)=tan\frac{\pi}{4}=1\)
Ta có: \(tan\left(a+b\right)=\frac{tana+tanb}{1-tana.tanb}\)
\(\Rightarrow B=tana+tanb=tan\left(a+b\right)\left(1-tana.tanb\right)=1.\left(1-3+2\sqrt{2}\right)=2\sqrt{2}-2\)
\(\left\{{}\begin{matrix}tana+tanb=2\sqrt{2}-2\\tana.tanb=3-2\sqrt{2}\end{matrix}\right.\)
Theo Viet đảo, \(tana;tanb\) là nghiệm của:
\(x^2-\left(2\sqrt{2}-2\right)x+3-2\sqrt{2}=0\)
\(\Leftrightarrow\left(x-\sqrt{2}+1\right)^2=0\Rightarrow x=\sqrt{2}-1\)
\(\Rightarrow tana=tanb=\sqrt{2}-1\Rightarrow a=b=\frac{\pi}{8}\)
Cho ΔABC có ba góc nhọn, BC = a, \(\widehat{B}=\alpha\), \(\widehat{C}=\beta\), đường cao AH.
a) CM: \(CH=\frac{a.\tan\alpha}{\tan\alpha+\tan\beta}\)
b) CM: \(\frac{1}{AH}=\frac{1}{a.\tan\alpha}+\frac{1}{a.\tan\beta}\)
Chọn đáp án đáp án đúng:
1. Cho \(sin\alpha.cos\left(\alpha+\beta\right)=sin\beta\) với \(\alpha+\beta\ne\frac{\pi}{2}+k\pi,\alpha\ne\frac{\pi}{2}+l\pi\left(k,l\in Z\right)\) ta có:
A. \(tan\left(\alpha+\beta\right)=2cot\alpha\)
B. \(tan\left(\alpha+\beta\right)=2cot\left(\beta\right)\)
C. \(tan\left(\alpha+\beta\right)=2tan\beta\)
D. \(tan\left(\alpha+\beta\right)=2tan\alpha\)
2. Rút gọn biểu thức \(A=\frac{sin3x+cos2x-sinx}{cosx+sin2x-cos3x}\left(sin2x\ne0;2sinx+1\ne0\right)\)
(Hic ..... cao nhân nào giúp me thì giải thích rõ ràng chút được ko ạ?)
1.
Ý tưởng thế này: nhìn vế trái phần đáp án có \(tan\left(a+b\right)\) nên cần biến đổi giả thiết xuất hiện \(sin\left(a+b\right)\) , vậy ta làm như sau:
\(sina.cos\left(a+b\right)=sin\left(a+b-a\right)\)
\(\Leftrightarrow sina.cos\left(a+b\right)=sin\left(a+b\right).cosa-cos\left(a+b\right).sina\)
\(\Leftrightarrow2sina.cos\left(a+b\right)=sin\left(a+b\right).cosa\)
\(\Rightarrow2tana=tan\left(a+b\right)\)
2.
Đây là 1 dạng cơ bản, nhìn vào lập tức cần ghép x với 3x (đơn giản vì \(\frac{x+3x}{2}=2x\))
\(A=\frac{sin3x-sinx+cos2x}{cosx-cos3x+sin2x}=\frac{2cos2x.sinx+cos2x}{2sin2x.sinx+sin2x}=\frac{cos2x\left(2sinx+1\right)}{sin2x\left(2sinx+1\right)}\)
\(=\frac{cos2x}{sin2x}=cot2x\)
Biết \(\alpha\)\(,\) \(\beta\) là góc nhọn,
\(\tan\alpha=\frac{1}{2}\)\(,\)\(\tan\beta=\frac{1}{3}\)
Tính \(\alpha+\beta\)
Đố: Cho \(\Delta ABC\), biết \(BC=a,AC=b,AB=c,\widehat{A}=\alpha,\widehat{B}=\beta,\widehat{C}=\gamma\) chứng minh:
a)\(\frac{a}{\sin\alpha}=\frac{b}{\sin\beta}=\frac{c}{\sin\gamma}\) b) \(a^2=b^2+c^2-2bc\cos\alpha\)
c) \(\frac{a-b}{a+b}=\frac{\tan\left[\frac{1}{2}\left(\alpha-\beta\right)\right]}{\tan\left[\frac{1}{2}\left(\alpha+\beta\right)\right]}\)
d) Biết \(s=\frac{a+b+c}{2}\). Chứng minh \(\frac{\cot\frac{\alpha}{2}}{s-a}=\frac{\cot\frac{\beta}{2}}{s-b}=\frac{\cot\frac{\gamma}{2}}{s-c}\)
Cho \(\tan\alpha\), \(\tan\beta\)là nghiệm phương trình: \(ax^2+bx+c=0\)
Tính theo a, b, c giá trị biểu thức: \(D=a.\sin^2\left(\alpha+\beta\right)+b.sin\left(\alpha+\beta\right).cos\left(\alpha+\beta\right)+c.cos^2\left(\alpha+\beta\right)\)