Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trí Phạm
Xem chi tiết
16 Ngô văn hoàng Long.
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 10 2021 lúc 8:12

Đề đúng: \(cos^2\alpha-cos^2\beta=sin^2\beta-sin^2\alpha=\dfrac{1}{1+tan^2\alpha}-\dfrac{1}{1+tan^2\beta}\)

Nguyễn Việt Lâm
7 tháng 10 2021 lúc 13:47

Áp dụng công thức: \(sin^2x+cos^2x=1\Rightarrow cos^2x=1-sin^2x\)

Ta có:

\(cos^2\alpha-cos^2\beta=\left(1-sin^2\alpha\right)-\left(1-sin^2\beta\right)=-sin^2\alpha+sin^2\beta=sin^2\beta-sin^2\alpha\) (1)

Lại có:

\(cos^2\alpha-cos^2\beta=\dfrac{cos^2\alpha}{1}-\dfrac{cos^2\beta}{1}=\dfrac{cos^2\alpha}{sin^2\alpha+cos^2\alpha}-\dfrac{cos^2\beta}{sin^2\beta+cos^2\beta}\)

\(=\dfrac{\dfrac{cos^2\alpha}{cos^2\alpha}}{\dfrac{sin^2\alpha}{cos^2\alpha}+\dfrac{cos^2\alpha}{cos^2\alpha}}-\dfrac{\dfrac{cos^2\beta}{cos^2\beta}}{\dfrac{sin^2\beta}{cos^2\beta}+\dfrac{cos^2\beta}{cos^2\beta}}=\dfrac{1}{tan^2\alpha+1}-\dfrac{1}{tan^2\beta+1}\) (2)

(1);(2) suy ra đpcm

Trần Khởi My
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 5 2020 lúc 16:29

\(A=tan\left(a+b\right)=tan\frac{\pi}{4}=1\)

Ta có: \(tan\left(a+b\right)=\frac{tana+tanb}{1-tana.tanb}\)

\(\Rightarrow B=tana+tanb=tan\left(a+b\right)\left(1-tana.tanb\right)=1.\left(1-3+2\sqrt{2}\right)=2\sqrt{2}-2\)

\(\left\{{}\begin{matrix}tana+tanb=2\sqrt{2}-2\\tana.tanb=3-2\sqrt{2}\end{matrix}\right.\)

Theo Viet đảo, \(tana;tanb\) là nghiệm của:

\(x^2-\left(2\sqrt{2}-2\right)x+3-2\sqrt{2}=0\)

\(\Leftrightarrow\left(x-\sqrt{2}+1\right)^2=0\Rightarrow x=\sqrt{2}-1\)

\(\Rightarrow tana=tanb=\sqrt{2}-1\Rightarrow a=b=\frac{\pi}{8}\)

Trí Phạm
Xem chi tiết
B.Trâm
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 7 2020 lúc 12:47

1.

Ý tưởng thế này: nhìn vế trái phần đáp án có \(tan\left(a+b\right)\) nên cần biến đổi giả thiết xuất hiện \(sin\left(a+b\right)\) , vậy ta làm như sau:

\(sina.cos\left(a+b\right)=sin\left(a+b-a\right)\)

\(\Leftrightarrow sina.cos\left(a+b\right)=sin\left(a+b\right).cosa-cos\left(a+b\right).sina\)

\(\Leftrightarrow2sina.cos\left(a+b\right)=sin\left(a+b\right).cosa\)

\(\Rightarrow2tana=tan\left(a+b\right)\)

2.

Đây là 1 dạng cơ bản, nhìn vào lập tức cần ghép x với 3x (đơn giản vì \(\frac{x+3x}{2}=2x\))

\(A=\frac{sin3x-sinx+cos2x}{cosx-cos3x+sin2x}=\frac{2cos2x.sinx+cos2x}{2sin2x.sinx+sin2x}=\frac{cos2x\left(2sinx+1\right)}{sin2x\left(2sinx+1\right)}\)

\(=\frac{cos2x}{sin2x}=cot2x\)

Le Trang Nhung
Xem chi tiết
Lê Song Phương
Xem chi tiết
Cao Chi Hieu
Xem chi tiết