Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ĐẶNG QUỐC SƠN
Xem chi tiết
Lê Thụy Sĩ
Xem chi tiết
cao van duc
10 tháng 7 2018 lúc 21:14

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

HUYNHTRONGTU
4 tháng 5 2021 lúc 15:00

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2

Khách vãng lai đã xóa
Lê Thụy Sĩ
Xem chi tiết
Lê Thụy Sĩ
Xem chi tiết
Uzumaki Naruto
Xem chi tiết
Bui Huyen
2 tháng 4 2019 lúc 20:23

\(\frac{x^2+5}{\sqrt{x^2+4}}=\frac{x^2+4+1}{\sqrt{x^2+4}}=\sqrt{x^2+4}+\frac{1}{\sqrt{x^2+4}}\)

Áp dụng BĐT Cô Si ,ta có:

\(\sqrt{x^2+4}+\frac{1}{\sqrt{x^2+4}}\ge2\sqrt{\sqrt{x^2+4}\cdot\frac{1}{\sqrt{x^2+4}}}=2\)

Girl
2 tháng 4 2019 lúc 20:36

Đặt \(A=\frac{x^2+5}{\sqrt{x^2+4}}\Leftrightarrow A-2=\frac{x^2+5-2\sqrt{x^2+4}}{\sqrt{x^2+4}}\)

\(A-2=\frac{x^2+4-2\sqrt{x^2+4}+1}{\sqrt{x^2+4}}=\frac{\left(\sqrt{x^2+4}-1\right)^2}{\sqrt{x^2+4}}\ge0\)

\(A\ge2\)

Nguyễn Phúc Thiên
Xem chi tiết
Nguyệt Hà
Xem chi tiết
zZz Cool Kid_new zZz
19 tháng 11 2019 lúc 20:00

\(\sqrt{2a^2+ab+2b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\frac{5}{4}\left(a+b\right)\)

Tương tự cộng vế theo vế thì 

\(M\ge\frac{5}{4}\left(2a+2b+2c\right)=\frac{5}{2}\left(a+b+c\right)=\frac{5}{2}\cdot2019\)

Dấu "=" xảy ra tại \(a=b=c=\frac{2019}{3}\)

bài 4 có trên mạng nha chị.tí e làm cách khác

bài 5 chị tham khảo bđt min cop ski r dùng svác là ra ạ.giờ e coi đá bóng,coi xong nghĩ tiếp ạ.

Khách vãng lai đã xóa
coolkid
19 tháng 11 2019 lúc 20:22

e nhầm đoạn này r

\(\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\) rồi cộng lại thì 

\(M\ge\frac{\sqrt{5}}{2}\left(2a+2b+2c\right)=\sqrt{5}\cdot2019\) ạ

Chắc lần này sẽ không nhầm nhưng hướng là thế ạ.

Khách vãng lai đã xóa
tth_new
20 tháng 11 2019 lúc 7:35

Bài 5 cần gì dùng Mincopxki chi cho mệt nhỉ?

\(\left(x^2+\frac{1}{x^2}\right)\left[2^2+\left(\frac{1}{2}\right)^2\right]\ge\left(2x+\frac{1}{2x}\right)^2\)

Do đó: \(\sqrt{x^2+\frac{1}{x^2}}\ge\frac{2x+\frac{1}{2x}}{\sqrt{2^2+\frac{1}{2^2}}}=\frac{4x+\frac{1}{x}}{\sqrt{17}}\)

Tương tự rồi cộng lại rồi dùng Cauchy-Schwarz

Khách vãng lai đã xóa
đồng hồ thụy sĩ
Xem chi tiết
Tái Hiện Cổ Tích
Xem chi tiết
Trần Hoàng Thiên Bảo
Xem chi tiết
Hoàng Lê Bảo Ngọc
1 tháng 11 2016 lúc 4:44

a/ ĐKXĐ : \(0\le x\ne4\)

\(B=\frac{x\sqrt{x}+15\sqrt{x}-35}{x-\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{\sqrt{x}-1}{\sqrt{x}-2}\)

\(=\frac{x\sqrt{x}+15\sqrt{x}-35-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x\sqrt{x}+15\sqrt{x}-35-x+4-x+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x\sqrt{x}-2x+15\sqrt{x}-30}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\frac{\left(\sqrt{x}-2\right)\left(x+15\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\frac{x+15}{\sqrt{x}+1}\)

c/ \(x=21-4\sqrt{5}=\left(2\sqrt{5}-1\right)^2\) thay vào B được

\(B=\frac{21-4\sqrt{5}+15}{2\sqrt{5}-1+1}=\frac{36-4\sqrt{5}}{2\sqrt{5}}=\frac{-10+18\sqrt{5}}{5}\)

d/ Đặt \(t=\sqrt{x},t\ge0\) thì \(B=\frac{t^2+15}{t+1}=6\Leftrightarrow t^2+15=6\left(t+1\right)\Leftrightarrow t^2-6t+9=0\Leftrightarrow t=3\)

=> x = 9

e/ \(B=\frac{t^2+15}{t+1}=\frac{6\left(t+1\right)+\left(t^2-6t+9\right)}{t+1}=\frac{\left(t-3\right)^2}{t+1}+6\ge6\)

Đẳng thức xảy ra khi t = 3 <=> x = 9

Vậy B đạt giá trị nhỏ nhất bằng 6 khi x = 9

OnIine Math
7 tháng 8 2018 lúc 9:07

a/ ĐKXĐ : 0≤x≠4

B=x√x+15√x−35x−√x−2 −√x+2√x+1 −√x−1√x−2 

=x√x+15√x−35−(√x+2)(√x−2)−(√x+1)(√x−1)(√x+1)(√x−2) 

=x√x+15√x−35−x+4−x+1(√x+1)(√x−2) 

=x√x−2x+15√x−30(√x+1)(√x−2) =(√x−2)(x+15)(√x+1)(√x−2) =x+15√x+1 

c/ x=21−4√5=(2√5−1)2 thay vào B được

B=21−4√5+152√5−1+1 =36−4√52√5 =−10+18√55 

d/ Đặt t=√x,t≥0 thì B=t2+15t+1 =6⇔t2+15=6(t+1)⇔t2−6t+9=0⇔t=3

=> x = 9

e/ B=t2+15t+1 =6(t+1)+(t2−6t+9)t+1 =(t−3)2t+1 +6≥6

Đẳng thức xảy ra khi t = 3 <=> x = 9

Vậy B đạt giá trị nhỏ nhất bằng 6 khi x = 9