Đặt \(\sqrt{x^2+4}=t\ge2\)
\(P=\frac{t^2+1}{t}=t+\frac{1}{t}=\frac{t}{4}+\frac{1}{t}+\frac{3t}{4}\ge2\sqrt{\frac{t}{4t}}+\frac{3.2}{4}=\frac{5}{2}\)
\(P_{min}=\frac{5}{2}\) khi \(t=2\) hay \(x=0\)
Đặt \(\sqrt{x^2+4}=t\ge2\)
\(P=\frac{t^2+1}{t}=t+\frac{1}{t}=\frac{t}{4}+\frac{1}{t}+\frac{3t}{4}\ge2\sqrt{\frac{t}{4t}}+\frac{3.2}{4}=\frac{5}{2}\)
\(P_{min}=\frac{5}{2}\) khi \(t=2\) hay \(x=0\)
Tìm GTNN của biểu thức :
A =\(\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\) với x≥1 ,y≥2 ,z≥3
\(P=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{2}}{\sqrt{x}-2}+\frac{2+5\sqrt{x}}{4-x}\)
a, nêu đk để xác định và rút gọn biểu thức P
b, tính giá trị của P khi x=\(\frac{1}{4}\)
c, tìm x để P < 2
CHUYÊN ĐỀ PHƯƠNG TRÌNH - HỆ PHƯƠNG TRÌNH CHỌN LỌC
Bài 1: Giải phương trình ẩn x sau :
a) \(\sqrt{\frac{1}{x+3}}+\sqrt{\frac{5}{x+4}}=4\)
b) \(\sqrt[8]{1-x}+\sqrt[3]{1+x}+\sqrt[8]{1-x^2}=3\)
Bài 2: Giải hệ phương trình :
a) \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\frac{x^2+4y^2}{2}}+\sqrt{\frac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\frac{y}{2x+1}=\frac{\sqrt{2x+1}+1}{\sqrt{y}+1}\\4x^2+5=y^2\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^2-xy+y^2=3\\z^2+yz+1=0\end{matrix}\right.\)
P/s: ai có lời giải đúng, đẹp tặng 1GP mỗi phần.
giải hệ phương trình \(\left\{{}\begin{matrix}\frac{\sqrt{x+2}}{3}+\frac{1}{2x-y}=\frac{4}{3}\\2\sqrt{x+2}-\frac{3}{y-2x}=5\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}\left|x+5\right|-\frac{2}{\sqrt{y}-2}=4\\\left|x+5\right|+\frac{1}{\sqrt{y}-2}=3\end{matrix}\right.\)
Rút gọn B
\(B=\frac{2\left(x+4\right)}{x-3\sqrt{x}-4}+\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{8}{\sqrt{x}-4}\)
Giải hệ phương trình:
1, \(\left\{{}\begin{matrix}x^2+1+y^2+xy=y\\x+y-2=\frac{y}{1+x^2}\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^3+8y^3-4xy^2=1\\2x^4+8y^4-2x-y=0\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}x^2+y^2=\frac{1}{5}\\4x^2+3x-\frac{57}{25}=-y\left(3x+1\right)\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}\sqrt{12-y}+\sqrt{y\left(12-x\right)}=12\\x^3-8x-1=2\sqrt{y-2}\end{matrix}\right.\)
5, \(\left\{{}\begin{matrix}\left(1-y\right)\sqrt{x-y}+x=2+\left(x-y-1\right)\sqrt{y}\\2y^2-3x+6y+1=2\sqrt{x-2y}-\sqrt{4x-5y-3}\end{matrix}\right.\)
Cho \(x=\frac{2}{\frac{1}{\sqrt{\sqrt{2}+1}-1}-\frac{1}{\sqrt{\sqrt{2}+1}+1}}\)
Tính giá trị biểu thức \(B=\left(x^4-x^3-x^2+2x-1\right)^{2011}\)
Giải phương trình:
1. \(5x^2+2x+10=7\sqrt{x^4+4}\)
2. \(\dfrac{4}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\)
3. \(\sqrt{x^2+2x}=\sqrt{3x^2+4x+1}-\sqrt{3x^2+4x+1}\)