Chương III - Hệ hai phương trình bậc nhất hai ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Thùy Dung

Tìm GTNN của biểu thức :

A =\(\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\) với x≥1 ,y≥2 ,z≥3

DƯƠNG PHAN KHÁNH DƯƠNG
13 tháng 5 2019 lúc 16:29

Ta có : \(\left\{{}\begin{matrix}x\ge1\\y\ge2\\z\ge3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\sqrt{x-1}\ge0\\\sqrt{y-2}\ge0\\\sqrt{z-3}\ge0\end{matrix}\right.\Rightarrow\sqrt{x-1}+\sqrt{y-2}+\sqrt{z-3}\ge0\)

Đặt \(\sqrt{x-1}=a;\sqrt{y-2}=b;\sqrt{z-3}=c\)

\(\Rightarrow A=\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\)

\(\sum\frac{a}{a^2+1}=\sum\left(a-\frac{a^3}{a^2+1}\right)\ge\sum\left(a-\frac{a}{2}\right)=\frac{a+b+c}{2}\)

\(\Rightarrow A\ge\frac{\sqrt{x-1}+\sqrt{y-2}+\sqrt{z-3}}{2}=0\)

Vậy \(MIN_A=0\) khi \(x=1;y=2;z=3\)

Nguyễn Việt Lâm
13 tháng 5 2019 lúc 16:11

\(A=\frac{1.\sqrt{x-1}}{x}+\frac{1}{\sqrt{2}}.\frac{\sqrt{2}.\sqrt{y-2}}{y}+\frac{1}{\sqrt{3}}.\frac{\sqrt{3}.\sqrt{z-3}}{z}\)

\(A\ge\frac{1+x-1}{2x}+\frac{1}{\sqrt{2}}\left(\frac{2+y-2}{2y}\right)+\frac{1}{\sqrt{3}}\left(\frac{3+z-3}{2z}\right)=\frac{6+3\sqrt{2}+2\sqrt{3}}{12}\)

\(\Rightarrow A_{min}=\frac{6+3\sqrt{2}+2\sqrt{3}}{12}\) khi \(\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-2}=\sqrt{2}\\\sqrt{z-3}=\sqrt{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=4\\z=6\end{matrix}\right.\)

Ya Ya
13 tháng 5 2019 lúc 16:36

A=
x
1.
x−1



+
2


1

.
y
2

.
y−2



+
3


1

.
z
3

.
z−3





A\ge\frac{1+x-1}{2x}+\frac{1}{\sqrt{2}}\left(\frac{2+y-2}{2y}\right)+\frac{1}{\sqrt{3}}\left(\frac{3+z-3}{2z}\right)=\frac{6+3\sqrt{2}+2\sqrt{3}}{12}A≥
2x
1+x−1

+
2


1

(
2y
2+y−2

)+
3


1

(
2z
3+z−3

)=
12
6+3
2

+2
3





\Rightarrow A_{min}=\frac{6+3\sqrt{2}+2\sqrt{3}}{12}⇒A
min

=
12
6+3
2

+2
3



khi \left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-2}=\sqrt{2}\\\sqrt{z-3}=\sqrt{3}\end{matrix}\right.





x−1

=1
y−2

=
2


z−3

=
3



\Rightarrow\left\{{}\begin{matrix}x=2\\y=4\\z=6\end{matrix}\right.⇒





x=2
y=4
z=6




Các câu hỏi tương tự
Trần Thanh Phương
Xem chi tiết
Nguyễn Võ Thảo VY
Xem chi tiết
Cát Cát Trần
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
王一博
Xem chi tiết
Vũ
Xem chi tiết
dung doan
Xem chi tiết
Nguyễn Võ Thảo VY
Xem chi tiết
Vũ
Xem chi tiết