ĐKXĐ : \(\left\{{}\begin{matrix}x+2\ge0\\2x-y\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ge-2\\2x\ne y\end{matrix}\right.\)
Ta có : \(\left\{{}\begin{matrix}\frac{\sqrt{x+2}}{3}+\frac{1}{2x-y}=\frac{4}{3}\\2\sqrt{x+2}-\frac{3}{y-2x}=5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\frac{\sqrt{x+2}}{3}+\frac{1}{2x-y}=\frac{4}{3}\\2\sqrt{x+2}+\frac{3}{2x-y}=5\end{matrix}\right.\)
- Đặt \(a=\sqrt{x+2},b=\frac{1}{2x-y}\) ( \(a\ge0,\frac{1}{b}\ne0\) ) ta được hệ :
\(\left\{{}\begin{matrix}\frac{a}{3}+b=\frac{4}{3}\\2a+3b=5\end{matrix}\right.\)
( Đoạn này bấm máy cho nhanh nha )
=> \(\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\) ( TM )
- Thay lại \(a=\sqrt{x+2},b=\frac{1}{2x-y}\) ta được :
\(\left\{{}\begin{matrix}\sqrt{x+2}=1\\\frac{1}{2x-y}=1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+2=1\\2x-y=1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=-1\\2\left(-1\right)-y=1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\) ( TM )
Vậy ...