Chứng minh a^2014 > 2014(a-1) với a>0
Chứng minh a2014 > 2014(a-1) với a>0
Bạn tham khảo lời giải tại đây:
Chứng minh
a2014> 2014(a-1) với a>0
Lời giải:
Áp dụng BĐT Cô-si cho các số dương:
$a^{2014}+\underbrace{1+1+....+1}_{2013}\geq 2014\sqrt[2014]{a^{2014}}$
$\Leftrightarrow a^{2014}+2013\geq 2014a$
$\Rightarrow a^{2014}+2014> 2014a$
$\Rightarrow a^{2014}> 2014(a-1)$ (đpcm)
CHỨNG MINH RẰNG
a^2014>2014(a-1) với a>0
MONG CÁC BẠN GIÚP
cho a,b khác 0 thỏa mãn a^2014 + b^2014 = a^2013 + b^2013 = a^2012 + b^2012
chứng minh rằng : a^2014 + b^2014 = a^2010 + b^2010
Đề \(\Rightarrow a^{2014}+b^{2014}-2\left(a^{2013}+b^{2013}\right)+a^{2012}+b^{2012}=0\)
\(\Leftrightarrow a^{2012}\left(a^2-2a+1\right)+b^{2012}\left(b^2-2b+1\right)=0\)
\(\Leftrightarrow a^{2012}\left(a-1\right)^2+b^{2012}\left(b-1\right)^2=0\)
\(\Leftrightarrow\left(a=0\text{ hoặc }a=1\right)\text{ và }\left(b=0\text{ hoặc }b=1\right)\)
\(+a=0\text{ hoặc }a=1\text{ thì }a^{2014}=a^{2010}\)
\(+b=0\text{ hoặc }b=1\text{ thì }b^{2014}=b^{2010}\)
Suy ra \(a^{2014}+b^{2014}=a^{2010}+b^{2010}\)
Cho a > b > 0.Chứng minh rằng:\(\dfrac{a^{2014}-b^{2014}}{a^{2014}+b^{2014}}>\dfrac{a^{2013}-b^{2013}}{a^{2013}+b^{2013}}\)
A=(2014+1)x(2014+2)x...x(2014+2014).Chứng minh A chia hết cho 2^2014
Cho A=(2014+1).(2014+2).(2014+3)+.....+(2014+2014)A=(2014+1).(2014+2).(2014+3)+.....+(2014+2014)
Chứng minh rằng A chia hết cho 2\(^{2014}\)
Cho A = \(\dfrac{2015}{2014^2+1}+\dfrac{2015}{2014^2+2}+\dfrac{2015}{2014^3+3}+....+\dfrac{2015}{2014^2+2014}\)
Chứng minh rằng A không là số nguyên dương
Các bạn ơi , giúp mình với T T