Bạn tham khảo lời giải tại đây:
Bạn tham khảo lời giải tại đây:
Chứng minh
a2014> 2014(a-1) với a>0
Cho các số dương a b c thỏa mãn, ab+bc+ac=2014
chứng minh rằng
\(\frac{a^2+2014}{a+b}+\frac{b^2+2014}{b+c}+\frac{a^2+2014}{c+a}=2\left(a+b+c\right)\)
a) Chứng minh rằng số n2 +2014 với n nguyên dương không là số chính phương.
b) Cho a, b là các số dương thỏa mãn a3 + b3 = a5 + b5.
Chứng minh rằng: a2 + b2 ≤ 1 + ab
Chứng minh các bất đẳng thức sau: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) (với a, b>0)
a) \(A=5^n.\left(5^n+1\right)+6^n.\left(3^n+2^n\right)⋮91\)
b) Chứng minh rằng với số \(n^2+2014\) với n nguyên dương không là số chính phương.
Cho các số a, b, c khác 0 thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
Tính \(S=\dfrac{2013a^2-2014}{a^2+2bc}+\dfrac{2013b^2-2014}{b^2+2ca}+\dfrac{2013c^2-2014}{c^2+2ab}\)
Chứng minh với 3 số a,b,c ta đầu có
(a-1)(a-3)(a-4)(a-6) + 9 ≥ 0
Cho: \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\) ( Với điều kiện các mẫu khác 0). Chứng minh: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=0\)
Chứng minh: \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\) với a, b, c>0.