Ta có kết quả tổng quát hơn như sau:
Cho $a,b,c \neq 0$ thỏa mãn $\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0.$
Chứng minh rằng $$S={\frac {k{a}^{2}-k-1}{{a}^{2}+2\,bc}}+{\frac {{b}^{2}k-k-1}{2\,ac+{b}^{2}}}+{\frac {{c}^{2}k-k-1}{2\,ab+{c}^{2}}}=k$$
Ta có kết quả tổng quát hơn như sau:
Cho $a,b,c \neq 0$ thỏa mãn $\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0.$
Chứng minh rằng $$S={\frac {k{a}^{2}-k-1}{{a}^{2}+2\,bc}}+{\frac {{b}^{2}k-k-1}{2\,ac+{b}^{2}}}+{\frac {{c}^{2}k-k-1}{2\,ab+{c}^{2}}}=k$$
Cho a, b, c khác nhau đôi một và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\). Rút gọn các biểu thức:
a) M= \(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\)
Cho a,b c là các số dương và a+b+c=3.
Tìm giá trị nhỏ nhất của biểu thức: \(A=\dfrac{a^{2014}+2013}{b^2+1}+\dfrac{b^{2014}+2013}{c^2+1}+\dfrac{c^{2014}+2013}{a^2+1}\)
Cho a, b, x, y, z là các số khác 0 thỏa mãn: \(\dfrac{x^2-yz}{a}=\dfrac{y^2-zx}{b}=\dfrac{z^2-xy}{c}\ne0\). CMR: \(\dfrac{a^2-bc}{x}=\dfrac{b^2-ca}{y}=\dfrac{c^2-ab}{z}\)
Cho a, b,c > 0 và \(a+b+c\le1\)
CMR : \(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\ge9\)
Cho 3 số a, b, c khác 0 thỏa mãn: ab+bc+ca=0. Hãy tính giá trị biểu thức \(N=\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}\)
a) phân tích đa thức thành nhân tử
\(a\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c\left(a+b\right)^2\left(a-b\right)\)
b)cho a,b,c khác nhau khác 0 và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
rút gọn biểu thức \(N=\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ca}+\dfrac{1}{c^2+2ab}\)
LÀM ƠN GIÚP MÌNH VỚI MÌNH ĐANG CẦN LỜI GIẢI CỦA BÀI NÀY GẤP LẮM MAI MÌNH PHẢI NỘP RỒI!!! LÀM ƠN NHA MỌI NGƯỜI
cho a,b,c là 3 số đôi một khác nhau thỏa mãn ab+bc+ca=0
Rút gọn biểu thức A=\(^{ }\dfrac{a^2}{a^2+2bc}+\dfrac{b^2}{b^2+2ac}+\dfrac{c^2}{c^2+2ab}\)
Cho a, b, c >0 thỏa mãn: abc=1. CM: \(\dfrac{1}{a^2-ab+b^2}+\dfrac{1}{b^2-bc+c^2}+\dfrac{1}{c^2-ac+a^2}\le a+b+c\)
Cho: \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\) ( Với điều kiện các mẫu khác 0). Chứng minh: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=0\)