tìm m để f(x) = x2 -2( m-1) x+m-2≤0 ∀ x∈ [ 0,1]
\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1\)
\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-m-8m+4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow m^2+2m+1-8m^2+36m-16< 0\)
\(\Leftrightarrow-7m^2+38m-15< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)
\(KL:m\in\left(5;+\infty\right)\)
Cho f(x)=(m+1)x2-2(m-1)x-m+4 tìm m để f(x)>0 với mọi x thuộc R
\(f\left(x\right)>0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a>0\\\Delta< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\left[-2\left(m-1\right)\right]^2-4\left(m+1\right)\left(-m+4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\4\left(m^2-2m+1\right)-4\left(-m^2+4m-m+4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow4m^2-8m+4+4m^2-12m-16< 0\)
\(\Leftrightarrow8m^2-20m-12< 0\)
\(KL:m\in\left(-1;3\right)\)
Cho hàm số F(x) = (m + 1)x2 - 2mx + m - 2 (m là tham số). a) Tìm m để phương trình f(x) = 0 có hai nghiệm trái dấu? b) Tìm m để bất phương trình f(x) < 0 có một nghiệm đúng với mọi x.
Với thì PT có nghiệm (chọn)
Với thì là đa thức bậc 2 ẩn
có nghiệm khi mà
Tóm lại để có nghiệm thì
cho f (x) = x2 - 2 (m-3)x + 4m. Tìm m để f (x) ≥ 0 ∀ x ∈ R
Do \(a=1>0\) nên \(f\left(x\right)\ge0;\forall x\) khi:
\(\Delta'=\left(m-3\right)^2-4m\le0\)
\(\Leftrightarrow m^2-10m+9\le0\)
\(\Rightarrow1\le m\le9\)
Cho f(x) = \(\dfrac{1}{3}\)x3 - (m - 2)x2 - 2mx + 6. Tìm tham số m để phương trình f'(x) = 0 có 2 nghiệm x1,x2 thoả mãn: x2 - x1 = x12
f(x)= x2+2(m-1)x +m+5
Tìm m để bpt f(x) < 0 có nghiệm
Tìm m để f(x) < 0 vô nghiệm
⇔ f(x) ≥ 0 ∀ x ∈ R
⇔ Δ' ≤ 0
⇔ m2 - 3m - 4 ≤ 0
⇔ -1 ≤ m ≤ 4
Vậy bpt có nghiệm khi \(\left[{}\begin{matrix}m< -1\\m>4\end{matrix}\right.\)
Tìm các giá trị của m để bất phương trình sau vô nghiệm:
f(x) = (m + 1) x 2 - 2(3 - 2m)x + m + 1 ≥ 0
f(x) = (m + 1) x 2 - 2(3 - 2m)x + m + 1 ≥ 0 (1)
Với m = -1:
(1) ⇔ -10x ≥ 0 ⇔ x ≤ 0
Vậy với m = -1 bất phương trình (1) có nghiệm x ≤ 0
Suy ra, m = -1 (loại)
Với m ≠ -1:
f(x) = (m +1 ) x 2 - 2(3 - 2m)x + m + 1
Δ' = [-(3 - 2m) ] 2 - (m + 1)(m + 1) = (2m - 3 ) 2 - (m + 1 ) 2
= (2m - 3 + m + 1)(2m - 3 - m - 1) = (3m - 2)(m - 4)
Để bất phương trình (1) vô nghiệm thì:
Vậy không có giá trị nào của m để bất phương trình (1) vô nghiệm
Tìm m để bất phương trình sau vô nghiệm: f(x) = (m - 2) x 2 - 2mx + m + 1 > 0
f(x) = (m-2) x 2 - 2mx + m + 1 > 0 (*)
Với m = 2 thì bất phương trình (*) trở thành:
f(x) = -4x + 3 > 0 ⇔ x < 3/4
Vậy với m = 2 thì bất phương trình (*) có nghiệm x < 3/4 nên m = 2 (loại)
Với m ≠ 2 thì bất phương trình (*) vô nghiệm khi và chỉ khi
Vậy với m < -2 thì bất phương trình (*) vô nghiệm
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 1 nghiệm phân biệt
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 2 nghiệm phân biệt
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 3 nghiệm phân biệt
ĐKXĐ: \(x\ge0\)
\(\left(x^2-x-m\right)\sqrt{x}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-x-m=0\left(1\right)\end{matrix}\right.\)
Giả sử (1) có nghiệm thì theo Viet ta có \(x_1+x_2=1>0\Rightarrow\left(1\right)\) luôn có ít nhất 1 nghiệm dương nếu có nghiệm
Do đó:
a. Để pt có 1 nghiệm \(\Leftrightarrow\left(1\right)\) vô nghiệm
\(\Leftrightarrow\Delta=1+4m< 0\Leftrightarrow m< -\dfrac{1}{4}\)
b. Để pt có 2 nghiệm pb
TH1: (1) có 1 nghiệm dương và 1 nghiệm bằng 0
\(\Leftrightarrow m=0\)
TH2: (1) có 2 nghiệm trái dấu
\(\Leftrightarrow x_1x_2=-m< 0\Leftrightarrow m>0\)
\(\Rightarrow m\ge0\)
c. Để pt có 3 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1+4m>0\\x_1x_2=-m>0\\\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{1}{4}< m< 0\)