Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bưu Ca
Xem chi tiết
ThuTrègg
21 tháng 10 2019 lúc 17:47

Trả lời : 

Bn tham khảo link này ạ : 

Câu hỏi của Cuồng Song Joong Ki - Toán lớp 9 - Học toán với OnlineMath 

Bài lm của bn : ★Ƙ - ƔƤČ★ - Trang của ★Ƙ - ƔƤČ★ - Học toán với OnlineMath nhé ! 

Chúc bn hc tốt <3 

( Dô thống kê hỏi đáp sẽ thấy ) 

Khách vãng lai đã xóa
Bưu Ca
Xem chi tiết
Vũ Tiến Manh
22 tháng 10 2019 lúc 15:29

M= \(x^2y^2+2+\frac{1}{x^2y^2}=\left(xy+\frac{1}{xy}\right)^2\)

\(xy+\frac{1}{xy}=xy+\frac{1}{16xy}+\frac{15}{16xy}\ge2\sqrt{xy.\frac{1}{16xy}}+\frac{15\left(x+y\right)}{16xy}=\frac{1}{2}+\frac{15}{16}\left(\frac{1}{x}+\frac{1}{y}\right)\ge\)\(\frac{1}{2}+\frac{15}{16}.\frac{4}{x+y}=\frac{1}{2}+\frac{15}{16}.4=\frac{17}{4}\) => M\(\ge\frac{17^2}{4^2}\)

dấu '=' khi xy = \(\frac{1}{16xy};x=y=>x=y=\frac{1}{2}\)

Khách vãng lai đã xóa
Phạm Nguyễn Hồng Chi
22 tháng 10 2020 lúc 9:01

\(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=\frac{x^2y^2+1}{y^2}.\frac{y^2x^2+1}{x^2}=\frac{\left(x^2y^2+1\right)^2}{x^2y^2}\)

\(=\frac{x^4y^4+2x^2y^2+1}{x^2y^2}=x^2y^2+2+\frac{1}{x^2y^2}=\left(xy+\frac{1}{xy}\right)^2\)

ta có:\(xy+\frac{1}{xy}=16xy+\frac{1}{xy}-15xy \left(1\right) \)

mặt khác:\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow x^2+y^2+2xy\ge4xy\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\Rightarrow-15xy\ge-\frac{15}{4} \left(2\right)\)

áp dụng bất đẳng thức cô si ta có:\(16xy+\frac{1}{xy}\ge2\sqrt{16xy.\frac{1}{xy}}=8 \left(3\right)\)

từ (1), (2), (3) ta có\(xy+\frac{1}{xy}\ge8-\frac{15}{4}=\frac{17}{4}\Rightarrow\left(xy+\frac{1}{xy}\right)^2\ge\frac{289}{16}\)

vậy \(M_{min}=\frac{289}{16}\)đạt được khi \(x=y=\frac{1}{2}\)

Khách vãng lai đã xóa
Uchiha Itachi
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 9 2020 lúc 13:16

\(A\ge\frac{1}{3}\left(x+\frac{1}{x}+y+\frac{1}{y}+z+\frac{1}{z}\right)^2\ge\frac{1}{3}\left(x+y+z+\frac{9}{x+y+z}\right)^2=\frac{100}{3}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

Khách vãng lai đã xóa
Nguyễn Thị Bình Yên
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 5 2019 lúc 23:43

\(I=2+x+\frac{1}{x}+y+\frac{1}{y}+\frac{x}{y}+\frac{y}{x}\)

\(I=2+x+\frac{1}{2x}+y+\frac{1}{2y}+\frac{x}{y}+\frac{y}{x}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(I\ge2+2\sqrt{\frac{x}{2x}}+2\sqrt{\frac{y}{2y}}+2\sqrt{\frac{xy}{xy}}+\frac{1}{2}.\frac{4}{\left(x+y\right)}\)

\(I\ge4+2\sqrt{2}+\frac{2}{x+y}\ge4+2\sqrt{2}+\frac{2}{\sqrt{2\left(x^2+y^2\right)}}=4+3\sqrt{2}\)

\(\Rightarrow I_{min}=4+3\sqrt{2}\) khi \(x=y=\frac{1}{\sqrt{2}}\)

Nguyen Duy Dai
Xem chi tiết
Phan Nghĩa
15 tháng 8 2020 lúc 15:47

dễ mà bạn :))) gáy tí , sai thì thôi

\(P=\frac{x^3}{\left(1+x\right)\left(1+y\right)}+\frac{y^3}{\left(1+y\right)\left(1+z\right)}+\frac{z^3}{\left(1+z\right)\left(1+x\right)}\)

\(=\frac{x^3\left(1+z\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}+\frac{y^3\left(1+x\right)}{\left(1+y\right)\left(1+x\right)\left(1+z\right)}+\frac{z^3\left(1+y\right)}{\left(1+x\right)\left(1+z\right)\left(1+y\right)}\)

\(=\frac{x^3\left(1+z\right)+y^3\left(1+x\right)+z^3\left(1+y\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\frac{3\sqrt[3]{x^3y^3z^3\left(1+x\right)\left(1+y\right)\left(1+z\right)}}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)

đến đây áp dụng BĐT phụ ( 1+a ) ( 1+b ) ( 1+c ) >= 8abc 

EZ :)))

Khách vãng lai đã xóa
Nguyen Duy Dai
15 tháng 8 2020 lúc 15:50

nhưng làm thế thì ko bảo toàn đc dấu bất đẳng thức mà

Khách vãng lai đã xóa
FL.Hermit
15 tháng 8 2020 lúc 15:53

TA LẦN LƯỢT ÁP DỤNG BĐT CAUCHY 3 SỐ VÀO TỪNG BDT SAU SẼ ĐƯỢC: 

Có:    \(\frac{x^3}{\left(1+x\right)\left(1+y\right)}+\frac{1+x}{8}+\frac{1+y}{8}\ge3\sqrt[3]{\frac{x^3\left(1+x\right)\left(1+y\right)}{64\left(1+x\right)\left(1+y\right)}}\)

=>      \(\frac{x^3}{\left(1+x\right)\left(1+y\right)}+\frac{1+x}{8}+\frac{1+y}{8}\ge\frac{3x}{4}\)

CMTT TA CŨNG SẼ ĐƯỢC:    \(\hept{\begin{cases}\frac{y^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+y}{8}+\frac{1+z}{8}\ge\frac{3y}{4}\\\frac{z^3}{\left(1+z\right)\left(1+x\right)}+\frac{1+z}{8}+\frac{1+x}{8}\ge\frac{3z}{4}\end{cases}}\)

=> TA CỘNG TỪNG VẾ 3 BĐT ĐÓ LẠI SẼ ĐƯỢC:   

\(\Rightarrow P+\frac{1+x}{4}+\frac{1+y}{4}+\frac{1+z}{4}\ge\frac{3}{4}\left(x+y+z\right)\)

\(\Rightarrow P+\frac{x+y+z+3}{4}\ge\frac{3}{4}\left(x+y+z\right)\)

\(\Rightarrow P\ge\frac{2\left(x+y+z\right)-3}{4}\)

TA LẠI ÁP DỤNG BĐT CAUCHY 3 SỐ 1 LẦN NỮA SẼ ĐƯỢC: 

\(\Rightarrow P\ge\frac{2.3\sqrt[3]{xyz}-3}{4}\)

\(\Rightarrow P\ge\frac{2.3-3}{4}=\frac{6-3}{4}=\frac{3}{4}\)      (DO \(xyz=1\))

DẤU "=" XẢY RA <=>    \(x=y=z\)

MÀ:     \(xyz=1\Rightarrow x=y=z=1\)

VẬY P MIN    \(=\frac{3}{4}\Leftrightarrow x=y=z=1\)

Khách vãng lai đã xóa
tuấn nguyễn
Xem chi tiết
Phương Trâm
11 tháng 5 2019 lúc 22:40

\(K=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

Ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\)

\(\Rightarrow\left(x+\frac{1}{x}\right)^2\ge4\)

\(\Rightarrow\left(y+\frac{1}{y}\right)^2\ge4\)

\(\Rightarrow M\ge8\)

Nguyễn Việt Lâm
12 tháng 5 2019 lúc 5:30

\(K\ge\frac{1}{2}\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2=\frac{1}{2}\left(4x+\frac{1}{x}+4y+\frac{1}{y}-3\left(x+y\right)\right)^2\)

\(K\ge\frac{1}{2}\left(2\sqrt{\frac{4x}{x}}+2\sqrt{\frac{4y}{y}}-3.1\right)^2=\frac{25}{2}\)

\(\Rightarrow K_{min}=\frac{25}{2}\) khi \(x=y=\frac{1}{2}\)

Nguyễn Đức Anh
Xem chi tiết
giang ho dai ca
29 tháng 5 2015 lúc 15:33

M = (1 + \(\frac{1}{x}\))(1 + \(\frac{1}{y}\)) . (1 - \(\frac{1}{x}\))(1 - \(\frac{1}{y}\)
= (1 + \(\frac{1}{x}\))(1 +\(\frac{1}{y}\) ) . \(\frac{\left(x-1\right)\left(y-1\right)}{x.y}\)
= (1 + \(\frac{1}{x}\))(1 + \(\frac{1}{y}\)) . \(\frac{\left(-x\right)\left(-y\right)}{x.y}\)
= (1 + \(\frac{1}{x}\))(1 + \(\frac{1}{y}\)
= 1 + \(\frac{1}{x.y}\) + (\(\frac{1}{x}+\frac{1}{y}\)) = 1 + \(\frac{1}{x.y}\) + \(\frac{x+y}{x.y}\)
= 1 + \(\frac{1}{x.y}\) + \(\frac{1}{x.y}\) = 1 + \(\frac{2}{x.y}\)
Áp dụng bđt: xy \(\le\) \(\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\) 
=> M ≥ 1 + \(2:\frac{1}{4}\)= 9 
Min M = 9 <=> x = y = 1/2

Lan hương
Xem chi tiết
Họ Và Tên
Xem chi tiết
ninja(team GP)
17 tháng 10 2020 lúc 12:35

qua hoidap247

Khách vãng lai đã xóa
Nguyễn Minh Đăng
17 tháng 10 2020 lúc 12:37

Ta có:

\(H=\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)

\(=\frac{\frac{1}{x^2}}{x\left(y+z\right)}+\frac{\frac{1}{y^2}}{y\left(z+x\right)}+\frac{\frac{1}{z^2}}{z\left(x+y\right)}\)

\(=\frac{\left(\frac{1}{x}\right)^2}{xy+zx}+\frac{\left(\frac{1}{y}\right)^2}{yz+xy}+\frac{\left(\frac{1}{z}\right)^2}{zx+yz}\)

Áp dụng BĐT Bunyakovsky dạng cộng mẫu ta được:

\(H\ge\frac{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{2\left(xy+yz+zx\right)}=\frac{\left(\frac{xy+yz+zx}{xyz}\right)^2}{2\left(xy+yz+zx\right)}=\frac{\left(xy+yz+zx\right)^2}{2\left(xy+yz+zx\right)}\)

\(=\frac{xy+yz+zx}{2}\ge\frac{3\sqrt[3]{\left(xyz\right)^2}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi: x = y = z = 1

Vậy Min(H) = 3/2 khi x = y = z = 1

Khách vãng lai đã xóa