2x^5-5y^3+4 tại x;y thỏa mãn (x-1)^20+(y+2)^30=0
1,A=2x^2+x-5y+4 tại x=1/2;y=-1/5
2,B=2x^2-3y^2+4z^3 tại x=2;y=z=-1
3,C=xy^3-xy+2x^2 tại x=3;y=-2
ai giup em vs
\(A=2x^2+x-5y+4\)
Thay x = 1/2 ; y = -1/52 vào biểu thức trên ta được :
\(=2.\frac{1}{4}+\frac{1}{2}-5.\frac{-1}{52}+4=1+\frac{5}{52}+4\)
\(=5+\frac{5}{52}=\frac{260}{52}+\frac{5}{52}=\frac{265}{52}\)
\(B=2x^2-3y^2+4z^3\)
Thay x = 2 ; y = z = -23 vào biểu thức trên ta được :
\(=2.4-3.169+4.2197=8-507+8788=8289\)
tương tự với c, bài này ko khó, tại số to nên tính có khi nhầm lẫn vài chỗ thôi.
Cho đa thức:
A=3x^5y-1/3xy^4+3/4x^2y^3-1/2x^5y+2xy^4-x^2y^3
B=1/4x^2-(5/2x-7/5x^2-1)+(5/2x-1-1/2x)
a) Thu gọn đa thức A và B
b) Tính giá trị của A tại x=3,y=-2
c) Chứng tỏ x=10/33 là nghiệm của đa thức B
tính giá trị biểu thức
D = 2x - 5y / x - 5y tại x/y = 3/4
Lời giải:
Vì \(\frac{x}{y}=\frac{3}{4}\Rightarrow x=\frac{3}{4}y\). Thay vào biểu thức đã cho ta có:
\(D=\frac{2x-5y}{x-5y}=\frac{2.\frac{3}{4}y-5y}{\frac{3}{4}y-5y}=\frac{y(\frac{3}{2}-5)}{y(\frac{3}{4}-5)}=\frac{\frac{3}{2}-5}{\frac{3}{4}-5}\)
\(D=\frac{14}{17}\)
BT10: Thực hiện phép tính
\(a,\dfrac{4}{5}y^2x^5-x^3.x^2y^2\)
\(b,-xy^3-\dfrac{2}{7}y^2.xy\)
\(c,\dfrac{5}{6}xy^2z-\dfrac{1}{4}xyz.y\)
\(d,15x^4+7x^4-20x^2.x^2\)
\(e,\dfrac{1}{2}x^5y-\dfrac{3}{4}x^5y+xy.x^4\)
\(f,13x^2y^5-2x^2y^5+x^6\)
a: =-1/5x^5y^2
b: =-9/7xy^3
c: =7/12xy^2z
d: =2x^4
e: =3/4x^5y
f: =11x^2y^5+x^6
1) (x+5)2
2) (2x-5y)2
3) (x+8) (x-8)
4) (x+4)3
5) (2x-1)3
1.\(\left(x+5\right)^2=x^2+10x+25\)
2. \(\left(2x-5y\right)^2=4x^2-20xy+25y^2\)
3. \(\left(x+8\right)\left(x-8\right)=x^2-64\)
4. \(\left(x+4\right)^3=x^3+12x^2+48x+64\)
5. \(\left(2x-1\right)^3=8x^3-12x^2+6x-1\)
Tính giá trị của biểu thức sau:
a) \(3x-5y+1\) tại \(x=\dfrac{1}{3}\) ; \(y=-\dfrac{1}{5}\) b) \(3x^2-2x-5\) tại \(x=1\) ; \(x=-1\)
\(a.3x-5y+1=3.\dfrac{1}{3}-5.\left(-\dfrac{1}{5}\right)+1=1+1+1=3\)
b.x=1
\(\Rightarrow3.1^2-2.1-5=-4\)
x=-1
\(\Rightarrow3.\left(-1\right)^2-2.\left(-1\right)-5=3+2-5=0\)
Bài 1. Thu gọn:
a) x2 – 4 – (x + 2)2 | b) (x + 2)(x – 2) – (x – 3)(x + 1) |
c) (x – 2)(x + 2) – (x – 2)(x + 5) | d) (6x + 1)2 + (6x – 1)2 – 2(6x + 1)(6x – 1) |
e) 7a(3a – 5) + (2a -3)(4a + 1) – (6a – 2)2 | g) (5y – 3)(5y + 3) – (5y – 4)2 |
h) (3x + 1)3 – (1 – 2x)3 | i) (2x + 1)2 + 2(4x2 – 1) + (2x – 1)2 |
a: Ta có: \(x^2-4-\left(x+2\right)^2\)
\(=x^2-4-x^2-4x-4\)
=-4x-8
b: Ta có: \(\left(x+2\right)\left(x-2\right)-\left(x-3\right)\left(x+1\right)\)
\(=x^2-4-x^2+2x+3\)
=2x-1
c: ta có: \(\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(x+5\right)\)
\(=\left(x-2\right)\left(x+2-x-5\right)\)
\(=-3x+6\)
d: Ta có: \(\left(6x+1\right)^2-2\left(6x+1\right)\left(6x-1\right)+\left(6x-1\right)^2\)
\(=\left(6x+1-6x+1\right)^2\)
=4
e: ta có: \(7a\left(3a-5\right)+\left(2a-3\right)\left(4a+1\right)-\left(6a-2\right)^2\)
\(=21a^2-35a+8a^2+2a-12a-3-\left(36a^2-24a+4\right)\)
\(=29a^2-45a-3-36a^2+24a-4\)
\(=-7a^2-21a-7\)
g: ta có: \(\left(5y-3\right)\left(5y+3\right)-\left(5y-4\right)^2\)
\(=25y^2-9-25y^2+40y-16\)
=40y-25
h: Ta có: \(\left(3x+1\right)^3-\left(1-2x\right)^3\)
\(=27x^3+27x^2+9x+1-1+6x-12x^2+8x^3\)
\(=35x^3+15x^2+15x\)
i: Ta có: \(\left(2x+1\right)^2+2\left(4x^2-1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1+2x-1\right)^2\)
\(=16x^2\)
1, x/-2 = y/5 và x + y = 12
2, x/3 = y/2 và 2x + 5y = 32
3, x/3 = y/3 và 2x + 4y = 28
4, x/3 = 4/16 và 3x - y = 35
8. 3x = 5y và x + y = 40
a) 2x=3y;5y=7z và x-y-z=-27
b)x/4=y/5=z/6 mà x^2-2y^2+z^2=18
c) x:y:z=3:8:5 và 3x+y-2z=14
d) 2x=3y;5y-7z và 3x+5y-7z=30
e)x-3/-4=y+4/7=z-5/3 và 3x-2y+7z=-48
f)-3x=4y;6y=7z và x-2y+3z=-48
g) x/-3=y/7;y/-2 =z/5 và -2x-4y +5z=146
Tìm x,y,z
a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)và\(x-y-z=-27\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)
Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)
\(\frac{y}{14}=9\Rightarrow y=9.14=126\)
\(\frac{z}{10}=9\Rightarrow z=9.10=90\)
Vậy:\(x=189;y=126\)và\(z=90\)
b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)và\(x^2-2y^2+z^2=18\)
\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)và\(x^2-2y^2+z^2=18\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)
Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)
\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)
Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)
c) \(x:y:z=3:8:5\)và\(3x+y-2z=14\)
\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)và\(3x+y-2z=14\)
\(\Rightarrow\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}\)và \(3x+y-2z=14\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\)
Ta có: \(\frac{3x}{9}=2\Rightarrow3x=18\Rightarrow x=6\)
\(\frac{y}{8}=2\Rightarrow y=16\)
\(\frac{2z}{10}=2\Rightarrow2z=20\Rightarrow z=10\)
Vậy:\(x=6;y=16;z=10\)