Cho tam giác ABC, trên tia BA lấy M, trên tia đối CA lấy N sao cho BM + CN = BC. Chứng minh rằng đường trung trực của MN luôn đi qua một điểm cố định.
Cho tam giác ABC, trên tia BA lấy M, trên tia đối CA lấy N sao cho BM = CN. Chứng minh rằng đường trung trực của MN luôn đi qua một điểm cố dịnh.
sao ko đổi tên thành' Ngọc Tự Làm :))
Cho tam giác ABC. Trên tia BA lấy một điểm M, trên tia CA lấy điểm N sao cho BM + CN = BC. Chứng minh rằng đường trung trực của MN luôn đi qua một điểm cố định.
ai giải đc mình cho 3 lik-e
cứu mình nhé!!!
Cho tam giác ABC. Trên tia BA lấy 1 đ' M, trên tia CA lấy 1 đ' N sao cho BM+CN=BC. CM rằng đường trung trực của MN luôn đi qua 1 đ' cố định
Sao toàn hỏi câu hóc búa zậy!!!!! (Mà hông có hóc búa thì cũng chẳng rảnh của nợ ghi ra!!!!!Chắc zậy đó?!!!!hì hì.....)
Cho tam giác ABC vuông tại A và AB < AC. Trên các tia BA và CA lấy điểm M,N thay đổi sao cho BM = CN. Chứng minh rằng đường trung trực của MN luôn đi qua 1 điểm cố định.
Cho tam giác cân ABC cân tại A ( AB = AC ) . Trên cạnh AB lấy 1 điểm M . Trên tia đối của tia CA lấy 1 điểm N sao cho CN = BM . Chứng minh đường trung trực của MN đi qua 1 điểm cố định
Cho tam giác ABC, trên tia BA lấy M, trên tia đối CA lấy N sao cho BM = CN. Chứng minh rằng đường trung trực của MN luôn đi qua một điểm cố định.
Cho tam giác ABC, AB<AC, trên tia BA và CA lần lượt lấy M và N sao cho BM=CN, trên cạnh AC lấy điểm D sao cho CD=AB. Chứng minh rằng: Ba đường trung trực của AD,MN,BC cùng đi qua một điểm
Gọi E là giao điểm các đường trung trực của MN và BC.
Theo tính chất đường trung trực ta có \(\left\{{}\begin{matrix}EM=EN\\EB=EC\end{matrix}\right.\).
Lại có BM = CN (gt) nên \(\Delta EMB=\Delta ENC(c.c.c)\).
Suy ra \(\widehat{EMB}=\widehat{ENC}\) nên \(\widehat{EMA}=\widehat{END}\).
Lại có BM = CN và AB = CD nên AM = ND.
Xét \(\Delta EMA\) và \(\Delta END\) có: \(\left\{{}\begin{matrix}AM=ND\\\widehat{EMA}=\widehat{END}\\EM=EN\end{matrix}\right.\)
\(\Rightarrow\Delta EMA=\Delta END\left(c.g.c\right)\Rightarrow EM=EN\).
Suy ra E thuộc đường trung trực của MN.
Vậy đường trung trực của ba đoạn AD, MN, BC đồng quy.
Cho tam giác ABC. Hai điểm MN theo thứ tự di chuyển trên hai tia BA và CA sao cho BM+CN=BC. Chứng minh rằng các đường trung trực của MN luôn đi qua một điểm cố định.
4 năm r k ai cho bn 1 câu trả lời
https://h.vn/hoi-dap/tim-kiem?q=cho+tam+gi%C3%A1c+ABC+.+Tr%C3%AAn+tia+BA+l%E1%BA%A5y+m%E1%BB%99t+%C4%91i%E1%BB%83m+M+,+tr%C3%AAn+tia+CA+l%E1%BA%A5y+m%E1%BB%99t+%C4%91i%E1%BB%83m+N+sao+cho+BM+++CN+=+BC+.+Ch%E1%BB%A9ng+minh+trung+tr%E1%BB%B1c+c%E1%BB%A7a+MN+lu%C3%B4n+%C4%91i+qua+m%E1%BB%99t+%C4%91i%E1%BB%83m+c%E1%BB%91+%C4%91%E1%BB%8Bnh&id=178383
cho tam giác ABC . Trên tia BA lấy một điểm M , trên tia CA lấy một điểm N sao cho BM + CN = BC . Chứng minh trung trực của MN luôn đi qua một điểm cố định