cho tam giác ABC vuông tại A, AB=12cm; AC=16cm. Vẽ đường cao AH (H thuộc BC). Đường phân giác BD của góc ABC cắt AH tại E ( D thuộc AC)
a) Chứng minh: AB^2 = BH.BC
b) Tính AD
c) Chứng minh: EA/EH = DC/DA
Cho tam giác ABC vuông tại A, AB= 12cm, BC= 20cm. Giải tam giác ABC
Áp dụng định lý Py-ta-go vào tam giác vuông ABC ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}\)
\(\Rightarrow AC=\sqrt{20^2-12^2}=16\left(cm\right)\)
Mà: \(sinB=\dfrac{AC}{BC}=\dfrac{16}{20}\)
\(\Rightarrow sinB=\dfrac{4}{5}\Rightarrow\widehat{B}\approx53^o\)
\(\Rightarrow\widehat{C}=180^o-90^o-53^o\approx37^o\)
bài 1;cho tam giác abc vuông tại b. tính độ dài ab biết ac=12cm,bc=8cm
bài 2; cho tam giác mnp vuông tại n tính độ dài mn biết mb=căn bậc 30,np=căn bâc 14
bài 3;cho tam giác abc vuông tại a biết ab=2cm tính bc
baif4;cho tam giác abc vuông tại a biết bc=2cm.tính ab,ac
baif5.cho tam giác abc vuông tại a
a)tính ab biết bc=10cm,ac=8cm.b)tính ac biết bc=12 cm,ab=10cm
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=BC^2+AB^2\)
\(\Leftrightarrow AB^2=AC^2-BC^2=12^2-8^2=80\)
hay \(AB=4\sqrt{5}cm\)
Vậy: \(AB=4\sqrt{5}cm\)
Bài 2:
Áp dụng định lí Pytago vào ΔMNP vuông tại N, ta được:
\(MP^2=MN^2+NP^2\)
\(\Leftrightarrow MN^2=MP^2-NP^2=\left(\sqrt{30}\right)^2-\left(\sqrt{14}\right)^2=16\)
hay MN=4cm
Vậy: MN=4cm
Bài 1 :
- Áp dụng định lý pi ta go ta được :\(BA^2+BC^2=AC^2\)
\(\Leftrightarrow AB^2+8^2=12^2\)
\(\Leftrightarrow AB=4\sqrt{5}\) ( cm )
Vậy ...
Bài 2 :
- Áp dụng định lý pi ta go vào tam giác MNP vuông tại N có :
\(MN^2+NP^2=MP^2\)
\(\Leftrightarrow MN^2+\sqrt{14}^2=\sqrt{30}^2\)
\(\Leftrightarrow MN=4\) ( đvđd )
Vậy ...
Cho tam giác ABC vuông tại A có AB = 12cm, BC = 15cm. Diện tích tam giác ABC là :
\(S=\dfrac{12\cdot9}{2}=6\cdot9=54\left(cm^2\right)\)
bổ sung
A. 108cm2 B. 54cm C. 54cm2 D. 15cm2
cho tam giác ABC vuông tại A có AB=16cm,AC=12cm. Kẻ AH vuông góc với BC tại H . Gọi S tam ABC là diện tích tam giác ABC 1) tính diện tích tam giác abc 2) tính BC,AH 3)tính BH,CH giúp mình vs ạ
1) Có \(\Delta ABC\) vuông
=> S\(\Delta ABC\) = \(\dfrac{AB.AC}{2}\) = \(\dfrac{16.12}{2}\) = 96 (cm2)
2) Có \(\Delta ABC\) vuông , theo định lý Pytago ta có :
AB2 + AC2 = BC2
=> 162 + 122 = BC2
=> 400 = BC2
=> BC = 20 (cm)
Ta có : S\(\Delta ABC\) = S\(\Delta ABH\) + S\(\Delta ACH\)
=> \(\dfrac{BH.AH}{2}+\dfrac{HC.AH}{2}=S\Delta ABC\)
=> \(\dfrac{BH.AH+HC.AH}{2}=S\Delta ABC\)
=> \(\dfrac{AH.\left(BH+HC\right)}{2}=S\Delta ABC\)
=> \(\dfrac{AH.BC}{2}\) = 96
=> AH = 96 . \(\dfrac{2}{BC}\) = 96 . \(\dfrac{2}{20}\) = 9.6 (cm)
3) Có \(\Delta ABH\) vuông , theo định lý Pytago ta có :
BH2 = AB2 - AH2
=>BH2 = 162 - 9.62 = 163.84
=> BH = 12.8 (cm)
=> CH = BC - BH = 20 - 12.8 = 7.2 (cm)
Cho tam giác ABC vuông tại A, biết AB=12cm,BC=20cm. Hãy tính diện tích tam giác ABC
Áp dụng định lí PTG: \(AC=\sqrt{BC^2-AB^2}=16\left(cm\right)\)
Vậy \(S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot12\cdot16=96\left(cm^2\right)\)
Cho tam giác ABC vuông tại A. Giải tam giác ABC, biết:
a) AC = 12cm, AB = 7cm.
b) BC = 20cm. B =35°;
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay \(BC=\sqrt{193}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{\sqrt{193}}\)
\(\Leftrightarrow\widehat{B}\simeq60^0\)
\(\Leftrightarrow\widehat{C}=30^0\)
Bài 1: Cho tam giác MNP vuông tại N có MN=6cm, MP=10cm. Tính độ dài NP.
Bài 2; Cho tam giác ABC vuông tại A. Tính cạnh BC trong các TH sau:
a. AB=8cm; AC=6cm
b, AB=12cm; AC=16cm
c. AB=5cm; AC=12cm.
Bài 2:
a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)
b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
c: \(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)
Bài 1: Cho tam giác ABC vuông tại A, phân giác AD, đường cao AH. Biết BD = 15cm; DC = 20cm. Tính AB, AC, AH,AD.
Bài 2: Cho tam giác ABC vuông tại A, phân giác AD, đường cao AH. Biết AB=12cm; AC = 16cm. Tính HD,HB.HC.
Bài 3: Cho tam giác ABC vuông tại A, phân giác AD, đường cao AH. Biết AB=24cm; AC = 32cm. Tính HD,HB,HC.
1:
BC=15+20=35cm
AD là phân gíac
=>AB/BD=AC/CD
=>AB/3=AC/4=k
=>AB=3k; AC=4k
AB^2+AC^2=BC^2
=>25k^2=35^2
=>k=7
=>AB=21cm; AC=28cm
AH=21*28/35=16,8cm
\(AD=\dfrac{2\cdot21\cdot28}{21+28}\cdot cos45=12\sqrt{2}\left(cm\right)\)
2:
BC=căn 12^2+16^2=20cm
HB=AB^2/BC=12^2/20=7,2cm
HC=20-7,2=12,8cm
cho tam giác ABC có BC = 12cm , AC = 5cm , AB = 13cm . Chọn khẳng định đúng
A . tam giác ABC là tam giác vuông tại A
B. tám giác ABC là tam giác nhọn
C. tam giác ABC là tam giác vuông tại C
D . tam giác ABC là tam giác tù
a/ Cho tam giác ABC vuông tại B có AB=12cm,BC=16cm.Tính AC
b/ Cho tam giác DBC vuông tại C có CB=3cm,BD=5cm.Tính CD
Áp dụng định lí Pytago ta có
\(a,BC^2=AB^2+BC^2=12^2+16^2\\ =\sqrt{400}=20\\ b,BD^2=BC^2+CD^2\\ 5^2=3^2+CD^2\\ CD^2=5^2-3^2=\sqrt{16}=4\)