Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hữu Quang
Xem chi tiết
Nguyễn Đức Trí
14 tháng 7 2023 lúc 23:04

Bài 3 :

\(BC=HC+HB=16+9=25\left(cm\right)\)

\(BC^2=AB^2+AC^2\Rightarrow AB^2=BC^2-AC^2=25^2-20^2=625-400=225=15^2\)

\(\Rightarrow AB=15\left(cm\right)\)

\(AH^2=HC.HB=16.9=4^2.3^2\Rightarrow AH=3.4=12\left(cm\right)\)

Bài 6:

\(AB=AC=4\left(cm\right)\) (Δ ABC cân tại A)

\(BH=HC=2\left(cm\right)\) (Ah là đường cao, đường trung tuyến cân Δ ABC) 

\(BC=BH+HC=2+2=4\left(cm\right)\)

Chu vi Δ ABC :

\(4+4+4=12\left(cm\right)\)

Phương Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 9 2021 lúc 22:20

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=HB\cdot HC\left(1\right)\)

Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AH^2=AE\cdot AB\left(2\right)\)

Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AH^2=AF\cdot AC\left(3\right)\)

Từ (1), (2) và (3) suy ra \(AE\cdot AB=AF\cdot AC=BH\cdot HC\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 10 2019 lúc 10:22

pham thi thu thao
Xem chi tiết
Không Tên
11 tháng 2 2018 lúc 8:31

Ap dụng định lý Pytago ta có:

        \(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)

\(\Leftrightarrow\)\(BC=\sqrt{100}=10\)

tth_new
14 tháng 2 2018 lúc 14:53

Ta có hình vẽ:  A H B C

 Áp dụng định lý Pitago. Ta có:

BC2 = AB2 + AC2 <=> 62 + 82 = 100 cm2

100 = 10 x 10

=> BC = 10 cm

 Áp dụng công thức Heron để tính chiều cao. Ta có:

  \(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)  (p là chu vi, S là diện tích, a,b,c là độ dài 3 cạnh)

  Ta có: Chu vi tam giác là: 6 + 8 + 10 =24 cm

Vậy \(S=\sqrt{24\left(24-6\right)\left(24-8\right)\left(24-10\right)}=48\sqrt{42}\)

   Để tính chiều cao AH, ta lấy 2 lần diện tích chia cho đáy ( BC) sẽ có được chiều cao

2 lần diện tích là: \(48\sqrt{42}.2=96\sqrt{42}\)

\(\Rightarrow AH=96\sqrt{42}:10=\frac{24\sqrt{42}}{25}\)

 Độ dài cạnh BH là:  (Bạn tự làm)

Độ dài cạnh HC là: (Bạn tự làm nhé)

Hoàng Khải Huân
9 tháng 5 2018 lúc 20:12

dfaishfdkasjnMajka  ưi

Chu Minh
Xem chi tiết
Watashi no shekai
10 tháng 7 2021 lúc 20:00

 

Áp dụng định lý Pi-ta-go vào tam giác vuông ABH vuông tại H ta có: 

    AB2= BH2 + AH2  

<=> 152= 122+ AH2

<=> AH2= 152- 122= 225- 144= 81

<=> AH= 9 (cm)

 Tương tự ta có : Áp dụng định lý Pi-ta-go vào tam giác vuông ACH vuông tại H .             

        AC2= AH2+ HC2

<=> 412= 92+ HC2

<=> HC2= 412- 92= 1681- 81= 1600

<=>HC= 40 (cm)

 

 

 

 

nngoc
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2021 lúc 0:39

Bài 5: 

a) Xét ΔABC vuông tại A có 

\(AC=AB\cdot\cot\widehat{C}\)

\(=21\cdot\cot40^0\)

\(\simeq25,03\left(cm\right)\)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=21^2+25,03^2=1067,5009\)

hay \(BC\simeq32,67\left(cm\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 3 2019 lúc 13:53

Thái Thanh Vân
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 1 2023 lúc 14:38

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC và AH là phân giác của góc BAC

=>góc BAH=góc CAH

b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

Do đó: ΔADH=ΔAEH

=>AD=AE

=>ΔADE cân tại A

TIAe
Xem chi tiết