Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Huyền
Xem chi tiết
Lê Ng Hải Anh
25 tháng 8 2018 lúc 16:43

\(a,4x^2-25-\left(2x-5\right)\left(2x+7\right)\)

\(=\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)\)

\(=\left(2x-5\right)\left(2x+5-2x-7\right)\)

\(=-2\left(2x-5\right)\)

\(b,x^3+27+\left(x+3\right)\left(x-9\right)\)

\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)

\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)

\(=\left(x+3\right)\left(x^2-2x\right)\)

\(=x\left(x+3\right)\left(x-2\right)\)

=.= hok tốt!!

Lê Việt Hùng
Xem chi tiết
Toru
26 tháng 11 2023 lúc 21:30

\(9(x-y)^2-27(y-x)^3\\=9(x-y)^2+27(x-y)^3\\=(x-y)^2[9+27(x-y)]\\=(x-y)^2(9+27x-27y)\\=9(x-y)^2(1+3x-3y)\)

tran thanh
Xem chi tiết
Nguyễn Lương Bảo Tiên
6 tháng 8 2015 lúc 21:54

x3 + 27 + (x + 3)(x - 9)

= (x + 3)(x2 + 3x + 9) + (x + 3)(x - 9)

= (x + 3)(x2 + 3x + 9 + x - 9)

= (x + 3)(x2 + 4x)

= x(x + 3)(x + 4)

Kenny
Xem chi tiết
Rhider
6 tháng 1 2022 lúc 17:15

x3+27+(x+3)(x+9)

= (x+3)(x2-3x+9)+(x+3)(x+9)

= (x+3)(x2-3x+9+x+9)

=(x+3)(x2-2x+18)

Nguyễn Hoàng Minh
6 tháng 1 2022 lúc 17:16

\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\\ =\left(x+3\right)\left(x^2-3x+9+x-9\right)\\ =\left(x+3\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x+3\right)\)

Phùng Kim Thanh
6 tháng 1 2022 lúc 17:16

x3+27+(x+3)(x+9)

= (x+3)(x2-3x+9)+(x+3)(x+9)

= (x+3)(x2-3x+9+x+9)

=(x+3)(x2-2x+18)

Ngọc Khánh
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 11 2021 lúc 17:25

\(1,=6xy\left(x^2-2xy+y^2\right)=6xy\left(x-y\right)^2\\ 2,=\left(x^2+4-4\right)\left(x^2+4+4\right)=x^2\left(x^2+8\right)\\ 3,=5x\left(x-y\right)-10\left(x-y\right)=5\left(x-2\right)\left(x-y\right)\\ 4,=\left(a-b\right)\left(a^2+ab+b^2\right)-3\left(a-b\right)=\left(a-b\right)\left(a^2+ab+b^2-3\right)\\ 5,=\left(x-1\right)^2-y^2=\left(x+y-1\right)\left(x-y-1\right)\\ 6,Sửa:x^2-x-2=x^2+x-2x-2=\left(x+1\right)\left(x-2\right)\\ 7,=x^4-4x^2-x^2+4=\left(x^2-4\right)\left(x^2-1\right)\\ =\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\\ 8,=-x^3-x^2-x=-x\left(x^2+x+1\right)\\ 9,=\left(a-3\right)\left(a^2+3a+9\right)+\left(a-3\right)\left(6a+9\right)\\ =\left(a-3\right)\left(a^2+9a+18\right)\\ =\left(a-3\right)\left(a^2+3a+6a+18\right)\\ =\left(a-3\right)\left(a+3\right)\left(a+6\right)\)

\(10,=x^2y-x^2z+y^2z-xy^2+z^2\left(x-y\right)\\ =xy\left(x-y\right)-z\left(x-y\right)\left(x+y\right)+z^2\left(x-y\right)\\ =\left(x-y\right)\left(xy-xz-yz+z^2\right)\\ =\left(x-y\right)\left(x-z\right)\left(y-z\right)\)

Đan Linh Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 11 2023 lúc 19:24

a: \(x^2-9-x^2\left(x^2-9\right)\)

\(=\left(x^2-9\right)-x^2\left(x^2-9\right)\)

\(=\left(x^2-9\right)\left(1-x^2\right)\)

\(=\left(1-x\right)\left(1+x\right)\left(x-3\right)\left(x+3\right)\)

b: \(x^2\left(x-y\right)+y^2\left(y-x\right)\)

\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2-y^2\right)\)

\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)=\left(x-y\right)^2\cdot\left(x+y\right)\)

c: \(x^3+27+\left(x+3\right)\left(x-9\right)\)

\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)

\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)

\(=\left(x+3\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x+3\right)\)

d: \(x^2+5x+6\)

\(=x^2+2x+3x+6\)

\(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)

e: \(3x^2-4x-4\)

\(=3x^2-6x+2x-4\)

\(=3x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(3x+2\right)\)

g: \(x^4+64y^4\)

\(=x^4+16x^2y^2+64y^4-16x^2y^2\)

\(=\left(x^2+8y^2\right)^2-\left(4xy\right)^2\)

\(=\left(x^2+8y^2-4xy\right)\left(x^2+8y^2+4xy\right)\)

 

Nguyễn Lê Phước Thịnh
1 tháng 11 2023 lúc 19:40

h: \(a^2+b^2+2a-2b-2ab\)

\(=a^2-2ab+b^2+2a-2b\)

\(=\left(a-b\right)^2+2\left(a-b\right)=\left(a-b\right)\left(a-b+2\right)\)

i: \(\left(x+1\right)^2-2\left(x+1\right)\left(y-3\right)+\left(y-3\right)^2\)

\(=\left(x+1-y+3\right)^2\)

\(=\left(x-y+4\right)^2\)

k: \(x^2\left(x+1\right)-2x\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-2x+1\right)\)

\(=\left(x+1\right)\left(x-1\right)^2\)

Hoàng văn tiến
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 12 2023 lúc 19:24

2(x+3)-x3-3x

\(=-x^3-3x+2x+6\)

\(=-x^3-x+6\)

Đa thức này ko phân tích được nha bạn

Lưu Nhật Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 11 2021 lúc 21:49

b: \(=2x^2-2x-5x+5\)

\(=\left(x-1\right)\left(2x-5\right)\)

Nguyễn Hoàng Minh
8 tháng 11 2021 lúc 21:52

\(a,=x\left(x^2-4\right)+ax\left(x-2\right)\\ =x\left(x-2\right)\left(x+2\right)+ax\left(x-2\right)\\ =\left(x-2\right)\left(x^2+2x+ax\right)\\ =x\left(x+a+2\right)\left(x-2\right)\\ b,=2x^2-2x-5x+5\\ =2x\left(x-1\right)-5\left(x-1\right)\\ =\left(2x-5\right)\left(x-1\right)\\ c,=\left(x+3\right)\left(x^2-3x+9\right)+\left(x-3\right)\left(x+3\right)\\ =\left(x+3\right)\left(x^2-2x+6\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 7 2017 lúc 11:00

x3 – 4x2 – 12x + 27

(Nhóm để xuất hiện nhân tử chung)

= (x3 + 27) – (4x2 + 12x)

= (x3 + 33) – (4x2 + 12x)

(nhóm 1 là HĐT, nhóm 2 có 4x là nhân tử chung)

= (x + 3)(x2 – 3x + 9) – 4x(x + 3)

= (x + 3)(x2 – 3x + 9 – 4x)

= (x + 3)(x2 – 7x + 9)

Mai Huy Bảo
Xem chi tiết
Toru
1 tháng 9 2023 lúc 21:41

\(\left(x+y-z\right)^3-x^3-y^3+z^3\)

\(=\left[\left(x+y\right)-z\right]^3-x^3-y^3+z^3\)

\(=\left(x+y\right)^3-z^3-3\left(x+y\right)z\left(x+y-z\right)-x^3-y^3+z^3\)

\(=x^3+y^3-z^3+3xy\left(x+y\right)-3\left(x+y\right)z\left(x+y-z\right)-x^3-y^3+z^3\)

\(=3xy\left(x+y\right)-3z\left(x+y\right)\left(x+y-z\right)\)

\(=3\left(x+y\right)\left[xy-z\left(x+y-z\right)\right]\)

\(=3\left(x+y\right)\left(xy-zx-yz+z^2\right)\)

\(=3\left(x+y\right)\left[x\left(y-z\right)-z\left(y-z\right)\right]\)

\(=3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)

#\(Urushi\text{☕}\)

Minh Duong
1 tháng 9 2023 lúc 21:38

Áp dụng (a+b)3 = a3+b3+3ab(a+b), ta có:

(x+y+z)3-x3-y3-z3

=[(x+y)+z]3-x3-y3-z3

=(x+y)3+z3+3z(x+y)(x+y+z)-x3-y3-z3

=x3+y3+3xy(x+y)+z3+3z(x+y)(x+y+z)-x3-y3-z3

=3(x+y)(xy+xz+yz+z2)

=3(x+y)[x(y+z)+z(y+z)]

=3(x+y)(y+z)(x+z)

Nguyễn Lê Phước Thịnh
1 tháng 9 2023 lúc 21:39

=(x+y-z-x)[(x+y-z)^2+x(x+y-z)+x^2]-(y-z)(y^2+yz+z^2)

=(y-z)(x^2+y^2+z^2+2xy-2xz-2yz+x^2+xy-xz+x^2-y^2-yz-z^2)

=(y-z)(3x^2+3xy-3xz-3yz)

=3(y-z)(x^2+xy-xz-yz)

=3(y-z)[x(x+y)-z(x+y)]

=3(y-z)(x+y)(x-z)