Cho d:x-2y-2=0 và A(0;1),B(0;1)
Tìm M thuộc d sao cho \(\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|\)nhỏ nhất
cho đỉnh A(0;2) và đt d:x-2y+2=0. tìm trên đt d 2 điểm B;C sao cho tam giác ABC vuông tại B và AB=2BC
B thuộc d nên B(2y-2;y)
C thuộc d nên C(x;0,5x+1)
vecto BA=(2y-2;y-2)
vecto BC=(x-2y;0,5x+1-y)
Theo đề, ta có: (2y-2)(x-2y)+(y-2)(0,5x+1-y)=0 và 2y-2=2x-4y và y-2=2(0,5x+1-y)
=>2y-2x=-2 và y-2=x+2-2y
=>-x+y=-1 và x+2-2y-y+2=0
=>x-y=1 và x-3y=-4
=>x=3,5 và y=2,5 và (2y-2)(x-2y)+(y-2)(0,5x+1-y)=0
=>\(\left(x,y\right)\in\varnothing\)
Trong mặt phẳng Oxy, cho đường thẳng d:x-2y+2=0; d':x-2y-8=0 Phép đối xứng tâm biến d thành d' và biến trục Ox thành chính nó có tâm I là:
A. (0;-3)
B. (0;3)
C. (-3;0)
D. (3,0)
Cho đường thẳng d : x − 1 1 = y − 2 − 2 = z − 2 1 và điểm A (1; 2; 1). Tìm bán kính của mặt cầu có tâm I nằm trên d, đi qua A và tiếp xúc với mặt phẳng (P): x - 2 y + 2 z + 1 = 0
A. R = 2
B. R = 4
C. R = 1
D. R = 3
Cho A là giao điểm của đường thẳng d : x - 1 2 = y + 2 - 3 = z - 5 4 và mặt phẳng P : 2 x + 2 y - z + 1 = 0 . Phương trình mặt cầu (S) có tâm I(1;2;-3) và đi qua A là
A. x - 1 2 + y - 1 2 + z + 3 2 = 21
B. x - 1 2 + y - 2 2 + z + 3 2 = 25
C. x + 1 2 + y + 2 2 + z + 3 2 = 21
D. x + 1 2 + y + 2 2 + z + 3 2 = 25
Chọn A
Từ hệ gồm phương trình đường thẳng d và mặt phẳng (P) ta tìm được điểm A. Mặt cầu có tâm I và bán kính R = IA.
Cho A là giao điểm của đường thẳng d : x - 1 2 = y + 2 - 3 = z - 5 4 và mặt phẳng ( P ) : 2 x + 2 y - z + 1 = 0 Phương trình mặt cầu (S) có tâm I(1;2;-3) và đi qua A là:
Trong mặt phẳng Oxy,cho đường thẳng d:x-2y+1=0 và điểm M(2;-2).Toạ độ hình chiếu vuông góc của điểm M lên đường thẳng d là
Phương trình đường vuông góc kẻ từ M đến d là \(2x+y-6=0\)
Hình chiếu của M trên d có tọa độ là nghiệm của hệ:
\(\left\{{}\begin{matrix}x-2y+1=0\\2x+y-6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{5}\\y=\dfrac{8}{5}\end{matrix}\right.\)
Phương trình đường thẳng vuông góc kẻ từ M đến d là \(2x+y-2=0\)
Hình chiếu của M có tọa độ là nghiệm hệ:
\(\left\{{}\begin{matrix}x-2y+1=0\\2x+y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{5}\\y=\dfrac{4}{5}\end{matrix}\right.\)
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = t y = − 1 z = − t và 2 mặt phẳng (P),(Q) lần lượt có phương trình x + 2 y + 2 z + 3 = 0 ; x + 2 y + 2 z + 7 = 0 . Viết phương trình mặt cầu (S) có tâm I thuộc đường thẳng d, tiếp xúc với hai mặt phẳng (P) và (Q).
A. x + 3 2 + y + 1 2 + z − 3 2 = 4 9
B. x − 3 2 + y + 1 2 + z + 3 2 = 4 9
C. x + 3 2 + y + 1 2 + z + 3 2 = 4 9
D. x − 3 2 + y − 1 2 + z + 3 2 = 4 9
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = t y = - 1 z = - t và 2 mặt phẳng P , Q lần lượt có phương trình x + 2 y + 2 z + 3 = 0 ; x + 2 y + 2 z + 7 = 0 . Viết phương trình mặt cầu (S) có tâm I thuộc đường thẳng d, tiếp xúc với hai mặt phẳng P và Q .
A. x + 3 2 + y + 1 2 + z - 3 2 = 4 9
B. x - 3 2 + y + 1 2 + z - 3 2 = 4 9
C. x + 3 2 + y + 1 2 + z + 3 2 = 4 9
D. x - 3 2 + y - 1 2 + z + 3 2 = 4 9
Giá trị của tham số m để d:x-2y+3=0 và d ' : x = 3 - m t y = - 2 - 2 t , t ∈ ℝ song song với nhau là:
A. m = 1
B. m = -1
C. m = 4
D. m = -4
Trong không gian với hệ tọa độ Oxzyz cho đường thẳng d : x = 6 + 5 t y = 2 + t z = 1 và mặt phẳng P : 3 x - 2 y + 1 = 0 . Góc hợp bởi giữa đường thẳng d và mặt phẳng (P) bằng
A. 30 °
B. 45 °
C. 60 °
D. 90 °
Gọi φ là góc giữa đường thẳng d và mặt phẳng (P).
Ta có
Chọn B.