Giải hệ phương trình
x2 + 5x +4 - 5 nhân căn bậc 2 của x2+5x +28=0
giải hệ phương trình
x2 – 5x + k = 0 (1)
x2 – 7x + 2k = 0 (2
tìm m để một trong các nghiệm của phương trình (1) lớn gấp 2 lần một trong các nghiệm của phương trình (2).
Cho phương trình: x2 + 5x + m – 2 = 0 (m là tham số).
a) Giải phương trình khi m = - 4.
b) Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thoả mãn: \(x_1^2+x_2^2-2x_1=25+2x_2\)
a) Thay m = -4 vào phương trình, ta có:
\(x^2+5x-6=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=1\end{matrix}\right.\)
KL: Vậy phương trình có tập nghiệm \(S=\left\{-6;1\right\}\) khi m = -4
b) Xét \(\Delta=5^2-4.1.\left(m-2\right)=25-4m+8=33-4m\)
Phương trình có 2 nghiệm phân biệt \(\Leftrightarrow33-4m>0\Leftrightarrow m< \dfrac{33}{4}\)
Theo định lý Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1.x_2=m-2\end{matrix}\right.\)
Để \(x_1^2+x^2_2-2x_1=25+2x_2\)
<=> \(\left(x_1+x_2\right)^2-2x_1x_2-2\left(x_1+x_2\right)-25=0\)
<=> \(\left(-5\right)^2-2\left(m-2\right)-2\left(-5\right)-25=0\)
<=> \(25-2m+4+10-25=0\)
<=> 2m = 14
<=> m = 7 (Tm)
Vậy m = 7 để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn \(x_1^2+x^2_2-2x_1=25+2x_2\)
Cho phương trình bậc hai \(x^2-5x+3=0\) . Gọi 2 nghiệm của phương trình là \(x_1,x_2\). Không giải phương trình hãy tính giá trị của A=\(||x_1-2|-\sqrt{x_2+1}|\). Mình cần gấp cảm ơn các bạn nhé
Vì \(x_2\)là nghiệm của phương trình
=> \(x_2^2-5x_2+3=0\)
=> \(x_2+1=x^2_2-4x_2+4=\left(x_2-2\right)^2\)
Theo viet ta có
\(\hept{\begin{cases}x_1+x_2=5\\x_1x_2_{ }=3\end{cases}}\)=> \(x_1^2+x_2^2=19\)
Khi đó
\(A=||x_1-2|-|x_2-2||\)
=> \(A^2=\left(x^2_1+x_2^2\right)-4\left(x_1+x_2\right)+8-2|\left(x_1-2\right)\left(x_2-2\right)|\)
=> \(A^2=19-4.5+8-2|3-2.5+4|=1\)
Mà A>0(đề bài)
=> A=1
Vậy A=1
2. Giải các bất phương trình sau:
a) x(x2 + x - 2) > 0. b) (3x2 + 7x – 6)(5x + 8)2 ≤ 0.
a) Ta có: \(f\left(x\right)=x\left(x^2+x-2\right)=x\left(x-1\right)\left(x+2\right)\)
Lập bảng xét dấu
Vậy để \(f\left(x\right)>0\) \(\Leftrightarrow x\in\left(-2;0\right)\cup\left(1;+\infty\right)\)
b) Ta có: \(\left(3x^2+7x-6\right)\left(5x+8\right)^2\le0\)
\(\Leftrightarrow3x^2+7x-6\le0\) \(\Leftrightarrow-3\le x\le\dfrac{2}{3}\)
Vậy \(x\in\left[-3;\dfrac{2}{3}\right]\)
1Phương trình bậc nhất 1 ẩn: là phương trình có dạng ax+b=0(a≠0).Thông thường để giải phương trình này ta chuyển những hạng tử có chứa biến về 1 vế, những hạng tử ko chứa biến về 1 vế
1)5x-3=16-8x 2)-7-5x=8+9x 3)18-5x=7+3x 4)9-7x=4x+3 5)11-11x=21-5x
6)2(-7+3x)=5-(x+2) 7)5(8+3x)+2(3x-8)=0 8)3(2x-1)-3x+1=0 9)-4(x-3)=6x+(x-3)
10)-5-(x+3)=2-5x
1, <=> 13x = 19 <=x = 19/13
2, <=> 14x = - 15 <=> x = -15/14
3, <=> 8x = 11 <=> x = 11/8
4, <=> 9 - 7x = 4x + 3 <=> 11x = 6 <=> x = 6/11
5, <=> 11-11x = 21 - 5x <=> 6x = - 10 <=> x = -5/3
6, <=> -12 + 6x = 3 - x <=> 7x = 15 <=> x = 15/7
7, <=> 40 + 15x + 6x - 16 = 0 <=> 21x = - 24 <=> x = -8/7
8, <=> 6x - 3 - 3x + 1 = 0 <=> 3x - 2 = 0 <=> x = 2/3
9, <=> -4x + 12 = 7x - 3 <=> 11x = 15 <=> x = 15/11
10, <=> -5 - x - 3 = 2 - 5x <=> -8 - x = 2 - 5x <=> 4x = 10 <=> x = 5/2
\(1,\Leftrightarrow5x+8x=16+3\)
\(\Leftrightarrow13x=19\)
\(\Leftrightarrow x=\dfrac{19}{13}\)
Vậy \(S=\left\{\dfrac{19}{13}\right\}\)
\(b,\Leftrightarrow-5x-9x=8+7\)
\(\Leftrightarrow-14x=15\)
\(\Leftrightarrow x=-\dfrac{15}{14}\)
Vậy \(S=\left\{-\dfrac{15}{14}\right\}\)
\(c,-5x-3x=7-18\)
\(\Leftrightarrow-8x=-11\)
\(\Leftrightarrow x=\dfrac{11}{8}\)
\(d\Leftrightarrow,7x-4x=3-9\)
\(\Leftrightarrow3x=-6\)
\(\Leftrightarrow x=-2\)
Vậy \(S=\left\{-2\right\}\)
\(5,\Leftrightarrow-11x+5x=21-11\)
\(\Leftrightarrow-6x=10\)
\(\Leftrightarrow x=-\dfrac{5}{3}\)
Vậy \(S=\left\{-\dfrac{5}{3}\right\}\)
\(6,\Leftrightarrow-14+6x=5-x-2\)
\(\Leftrightarrow6x+x=5+14-2\)
\(\Leftrightarrow7x=17\)
\(\Leftrightarrow x=\dfrac{17}{7}\)
Vậy \(S=\left\{\dfrac{17}{7}\right\}\)
\(7,40+15x+6x-16=0\)
\(\Leftrightarrow15x+6x=16-40\)
\(\Leftrightarrow21x=-24\)
\(\Leftrightarrow x=-\dfrac{24}{21}\)
Vậy \(S=\left\{-\dfrac{24}{21}\right\}\)
\(8,6x-3-3x+1=0\)
\(\Leftrightarrow6x-3x=3-1\)
\(\Leftrightarrow3x=2\)
\(\Leftrightarrow x=\dfrac{2}{3}\)
Vậy \(S=\left\{\dfrac{2}{3}\right\}\)
Câu (9) và (10) bạn áp dụng như các câu trên, nhân các ngoặc và đổi dấu sau khi bỏ ngoặc hoặc chuyển vế.
Cho x1 x2 là nghiệm của phương trình x2 -2x-1 hãy lập 1 phương trình bậc 2 1 ẩn có 2 nghiệm là |(x1)3|.|(x2)3|
Bài 1 : giải các phương trình
a, 5x+35=0 b, 9x-3=0
c, 24-8x=0 d,-6x+16=0
Bài 2 : giải các phương trình
a, 7x-5=13-5x b, 13-7x=4x-20
c, 2-3x=5x+10 d, 11-9x=3-7x
Bài 3 : tìm giá trị của m sao cho phương trình sau nhận x=-3 làm nghiệm
4x+3m=3-2x
Bài 4: cho hai phương trình ẩn x :
3x+3=0 (1)
5-kx=7 (2)
tìm giá trị của k sao cho nghiệm của phương trình 1 là nghiệm của phương trình 2
Mn Giúp Mk vs Ạ
Giải phương trình bậc 3:
a)2x^3+5x^2-3x-10=0
b)x^3-2x^2+7x+66=0
c)x^3+3x-4=0
d)x^3+7x^2-48=0
e)4x^3+4x^2-x+14=0
f)3x^3-4x^2+5x+500=0
Số nghiệm của hệ phương trình x 2 + x y + y 2 = 4 x + y + x y = 2 là
A. 1
B. 2
C. 3
D. 4
Ta có: x 2 + x y + y 2 = 4 x + y + x y = 2 ⇔ x + y 2 - x y = 4 x + y + x y = 2
Đặt S= x+ y; P = xy. Khi đó hệ phương trình trên trở thành: S 2 - P = 4 ( 1 ) S + P = 2 ( 2 )
Từ (2) suy ra: P= 2- S thay (1): S2 - (2 – S) = 4
⇔ S 2 + S - 6 = 0 ⇔ [ S = - 3 S = 2
* Với S = -3 thì P = 5. Khi đó,x, y là nghiệm phương trình: t2 + 3t + 5 = 0 ( vô nghiệm).
* Với S= 2 thì P = 0. Khi đó, x, y là nghiệm phương trình:
t2 – 2t = 0 ⇔ [ t = 0 t = 2
Do đó, có 2 cặp số thỏa mãn là ( 0; 2) và(2; 0).
Chọn B.