Cho x+y+z = 1. Chứng minh : xy+yz+xz - 2xyz <= 7/27
cho \(x,y,z\ge0;x+y+z=1\)
chứng minh: \(0\le xy+yz+xz=2xyz\le\dfrac{7}{27}\)
Lời giải:
Vế đầu tiên:
Áp dụng BĐT AM-GM ta có:
\(xy+yz+xz=(x+y+z)(xy+yz+xz)\geq 3\sqrt[3]{xyz}.3\sqrt[3]{xy.yz.xz}=9xyz\)
\(9xyz\geq 2xyz\) với mọi $x,y,z\geq 0$
Do đó: \(xy+yz+xz\geq 2xyz\Rightarrow xy+yz+xz-2xyz\geq 0\)
Ta có đpcm.
Vế thứ hai
Áp dụng BĐT Schur bậc 3 ta có (hoặc bạn có thể cm BĐT quen thuộc này bằng AM-GM ngược dấu)
\(xyz\geq (x+y-z)(y+z-x)(z+x-y)\)
\(\Leftrightarrow xyz\geq (1-2z)(1-2x)(1-2y)\)
\(\Leftrightarrow xyz\geq 4(xy+yz+xz)-2(x+y+z)+1-8xyz=4(xy+yz+xz)-1-8xyz\)
\(\Rightarrow 9xyz\geq 4(xy+yz+xz)-1\Rightarrow xyz\geq \frac{4}{9}(xy+yz+xz)-\frac{1}{9}\)
Do đó:
\(xy+yz+xz-2xyz\leq xy+yz+xz-2\left(\frac{4}{9}(xy+yz+xz)-\frac{1}{9}\right)=\frac{xy+yz+xz+2}{9}(*)\)
Mà theo hệ quả quen thuộc của BĐT AM-GM:
\(1=(x+y+z)^2\geq 3(xy+yz+xz)\Rightarrow xy+yz+xz\leq \frac{1}{3}\)
\(\Rightarrow \frac{xy+yz+xz+2}{9}\leq \frac{\frac{1}{3}+2}{9}=\frac{7}{27}(**)\)
Từ \((*);(**)\Rightarrow xy+yz+xz-2xyz\leq \frac{7}{27}\) (đpcm)
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xz ( x + z ) + xy ( x + y + z ) + yz ( x + y + z )
= xz ( x + z ) + xy ( x + z ) + yz ( x + z ) + xy2 + y2z
= ( xy + yz + zx ) ( x + z ) + y2( x + z )
= ( xy + y2 + yz + zx )( x + z )
= ( x + y ) ( y + z ) ( x + z )
Chúc bạn học tốt!
#peace
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz=xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+z\right)\)
\(=y\left(x+y+z\right)\left(x+z\right)+xz\left(x+z\right)=\left(xy+y^2+zy+xz\right)\left(x+z\right)=\left\{y\left(x+y\right)+z\left(x+y\right)\right\}\left(x+z\right)=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\)
\(=x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+2xyz\)
\(\text{Chúc bạn học tốt \!}\)
\(\text{Nếu đúng thì tích nha !}\)
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
=x2y+xy2+y2x+yz2+x2z+xz2+2xyz
=> hết biết làm
1. Phân tích thành nhân tử:
xy(x + y) + yz(y + z) + xz(x+z) + 2xyz
\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz.\)
\(=x^2y+xy^2+y^2z+yz^2+xz\left(x+z\right)+2xyz\)
\(=\left(x^2y+xyz\right)+\left(xy^2+y^2z\right)+\text{(}yz^2+xyz\text{)}+xz\left(x+z\right)\)
\(=xy\left(x+z\right)+y^2\left(x+z\right)+yz\left(x+z\right)+xz\left(x+z\right)\)
\(=\left(x+z\right)\left(xy+y^2+yz+xz\right)\)
\(=\left(x+z\right)\text{[}y\left(x+y\right)+z\left(x+y\right)\text{]}\)
\(=\left(x+z\right)\left(x+y\right)\left(y+z\right)\)
Cho các số dương x,y,z . Chứng minh rằng:
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+yz+xy}\le\frac{x^2+y^2+z^2}{xy+yz+xz}\)
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
Phân tích thành nhân tử: xy(x + y) + yz(y + z) + xz(x + z) + 2xyz
xy(x + y) + yz(y + z) + xz(x + z) + 2xyz
= x 2 y + x y 2 + yz(y + z) + x 2 z + x z 2 + xyz + xyz
= ( x 2 y + x 2 z) + yz(y + z) + (x y 2 + xyz) + (x z 2 + xyz)
= x 2 (y + z) + yz(y + z) + xy(y+ z) + xz(y + z)
= (y + z)( x 2 + yz + xy + xz) = (y + z)[( x 2 + xy) + (xz + yz)]
= (y + z)[x(x + y) + z(x + y)] = (y + z)(x+ y)(x + z)
Cho x,y,z dương thỏa mãn xy +yz+zx+2xyz =1 .Chứng minh :1/x+1/y+1/z >= 4*(x+y+z)