Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hà My
Xem chi tiết
Akai Haruma
29 tháng 12 2018 lúc 16:11

Lời giải:
Vế đầu tiên:

Áp dụng BĐT AM-GM ta có:

\(xy+yz+xz=(x+y+z)(xy+yz+xz)\geq 3\sqrt[3]{xyz}.3\sqrt[3]{xy.yz.xz}=9xyz\)

\(9xyz\geq 2xyz\) với mọi $x,y,z\geq 0$

Do đó: \(xy+yz+xz\geq 2xyz\Rightarrow xy+yz+xz-2xyz\geq 0\)

Ta có đpcm.

Vế thứ hai

Áp dụng BĐT Schur bậc 3 ta có (hoặc bạn có thể cm BĐT quen thuộc này bằng AM-GM ngược dấu)

\(xyz\geq (x+y-z)(y+z-x)(z+x-y)\)

\(\Leftrightarrow xyz\geq (1-2z)(1-2x)(1-2y)\)

\(\Leftrightarrow xyz\geq 4(xy+yz+xz)-2(x+y+z)+1-8xyz=4(xy+yz+xz)-1-8xyz\)

\(\Rightarrow 9xyz\geq 4(xy+yz+xz)-1\Rightarrow xyz\geq \frac{4}{9}(xy+yz+xz)-\frac{1}{9}\)

Do đó:

\(xy+yz+xz-2xyz\leq xy+yz+xz-2\left(\frac{4}{9}(xy+yz+xz)-\frac{1}{9}\right)=\frac{xy+yz+xz+2}{9}(*)\)

Mà theo hệ quả quen thuộc của BĐT AM-GM:

\(1=(x+y+z)^2\geq 3(xy+yz+xz)\Rightarrow xy+yz+xz\leq \frac{1}{3}\)

\(\Rightarrow \frac{xy+yz+xz+2}{9}\leq \frac{\frac{1}{3}+2}{9}=\frac{7}{27}(**)\)

Từ \((*);(**)\Rightarrow xy+yz+xz-2xyz\leq \frac{7}{27}\) (đpcm)

Ôn Cẩm Minh
Xem chi tiết
Cold Wind
27 tháng 6 2016 lúc 22:03

http://olm.vn/hoi-dap/question/614962.html

Cold Wind
27 tháng 6 2016 lúc 22:10

Ad ơi. Tha cho con, con chỉ trích link thôi mà. Với lại linh này cũng là của olm mà, sao ad duyệt lâu qá trời làm con sợ qá ak!!!!!

Nguyễn Mạnh Thắng
Xem chi tiết
Trần Đức Khang
12 tháng 4 2020 lúc 22:25

= xz ( x + z ) + xy ( x + y + z ) + yz ( x + y + z )

= xz ( x + z ) + xy ( x + z ) + yz ( x + z ) + xy+ y2z

= ( xy + yz + zx ) ( x + z ) + y2( x + z )

= ( xy + y2 + yz + zx )( x + z )

= ( x + y ) ( y + z ) ( x + z )

Chúc bạn học tốt!

#peace

Khách vãng lai đã xóa
ngo thi hoa
Xem chi tiết
Phương An
8 tháng 10 2016 lúc 14:29

\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz=xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+z\right)\)

\(=y\left(x+y+z\right)\left(x+z\right)+xz\left(x+z\right)=\left(xy+y^2+zy+xz\right)\left(x+z\right)=\left\{y\left(x+y\right)+z\left(x+y\right)\right\}\left(x+z\right)=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Vũ Trung Kiên
Xem chi tiết
Võ Đông Anh Tuấn
29 tháng 9 2016 lúc 9:17

\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\)

\(=x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+2xyz\)

\(\text{Chúc bạn học tốt \!}\)

\(\text{Nếu đúng thì tích nha !}\)

TFboys_Lê Phương Thảo
29 tháng 9 2016 lúc 10:27

xy(x+y)+yz(y+z)+xz(x+z)+2xyz

=x2y+xy2+y2x+yz2+x2z+xz2+2xyz

=> hết biết làm

Nguyễn Lê Khánh Huyền
Xem chi tiết
Hà Thị Quỳnh
10 tháng 8 2016 lúc 13:02

\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz.\)

\(=x^2y+xy^2+y^2z+yz^2+xz\left(x+z\right)+2xyz\)

\(=\left(x^2y+xyz\right)+\left(xy^2+y^2z\right)+\text{(}yz^2+xyz\text{)}+xz\left(x+z\right)\)

\(=xy\left(x+z\right)+y^2\left(x+z\right)+yz\left(x+z\right)+xz\left(x+z\right)\)

\(=\left(x+z\right)\left(xy+y^2+yz+xz\right)\)

\(=\left(x+z\right)\text{[}y\left(x+y\right)+z\left(x+y\right)\text{]}\)

\(=\left(x+z\right)\left(x+y\right)\left(y+z\right)\)

Ngọc Vĩ
Xem chi tiết
Hà Ngọc Khánh
17 tháng 6 2016 lúc 16:49

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

Đặng Minh Triều
16 tháng 6 2016 lúc 22:25

bài của tui mà -_-

Ngọc Vĩ
16 tháng 6 2016 lúc 22:30

hihi k biết làm nên đăng ^^

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 10 2018 lúc 7:36

xy(x + y) + yz(y + z) + xz(x + z) + 2xyz

= x 2 y + x y 2  + yz(y + z) +  x 2 z + x z 2  + xyz + xyz

= ( x 2 y +  x 2 z) + yz(y + z) + (x y 2  + xyz) + (x z 2  + xyz)

=  x 2 (y + z) + yz(y + z) + xy(y+ z) + xz(y + z)

= (y + z)(  x 2  + yz + xy + xz) = (y + z)[( x 2  + xy) + (xz + yz)]

= (y + z)[x(x + y) + z(x + y)] = (y + z)(x+ y)(x + z)

Nguyễn Vũ Thắng
Xem chi tiết