CM đẳng thức sau \(\left(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{a-b}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right).\frac{1}{\sqrt{a}+\sqrt{b}}=1\) với \(a\ge0,b\ge0,a\ne b\)
chứng minh đẳng thức
\(\left(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{a-b}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}\right).\frac{1}{\sqrt{a}+\sqrt{b}}=1\)
với a\(\ge0\)
ĐK: \(a,b\ge0,a\ne b\)
\(A=\left(\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}+\sqrt{a}+\sqrt{b}-\sqrt{ab}\right).\frac{1}{\sqrt{a}+\sqrt{b}}\)
\(A=\left(\sqrt{ab}+\sqrt{a}+\sqrt{b}-\sqrt{ab}\right).\frac{1}{\sqrt{a}+\sqrt{b}}\)
\(A=\left(\sqrt{a}+\sqrt{b}\right).\frac{1}{\sqrt{a}+\sqrt{b}}=1=VP\)
Vậy đẳng thức được cm.
rút gọn các biểu thức sau
a) \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{7+4\sqrt{3}}\)
b) \(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right):\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)với \(a\ge0;b\ge0;a\ne b\)
a) \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{7+4\sqrt{3}}=\left|2-\sqrt{3}\right|+\sqrt{4+4\sqrt{3}+3}\)
\(=2-\sqrt{3}+\sqrt{\left(2+\sqrt{3}\right)^2}=2-\sqrt{3}+\left|2+\sqrt{3}\right|\)
\(=2-\sqrt{3}+2+\sqrt{3}=4\)
b) \(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right):\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\left[\frac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right].\frac{1}{a-b}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\left[\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right].\frac{1}{a-b}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\left(a-\sqrt{ab}+b-\sqrt{ab}\right).\frac{1}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{\left(a-2\sqrt{ab}+b\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}=\frac{\sqrt{a}-\sqrt{b}+2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}=1\)
a) \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{7+4\sqrt{3}}\)
\(=\left|2-\sqrt{3}\right|+\sqrt{3+4\sqrt{3}+4}\)
\(=2-\sqrt{3}+\sqrt{\left(\sqrt{3}+2\right)^2}\)
\(=2-\sqrt{3}+\left|\sqrt{3}+2\right|\)
\(=2-\sqrt{3}+\sqrt{3}+2\)
\(=4\)
b) \(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\div\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)( \(\hept{\begin{cases}a,b\ge0\\a\ne b\end{cases}}\))
\(=\left(\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\left(\sqrt{a}+\sqrt{b}\right)}-\sqrt{ab}\right)\div\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\left(a-\sqrt{ab}+b-\sqrt{ab}\right)\div\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\left(a-2\sqrt{ab}+b\right)\div\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{a-2\sqrt{ab}+b}{a-b}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{a-2\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{2\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{a-2\sqrt{ab}+b+2\sqrt{ab}-2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{a-b}{a-b}=1\)
C/m biểu thức
a)\(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)=1\)(a,b>0,a\(\ne\)0
b)\(\frac{a-b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\frac{1}{\sqrt{a}+\sqrt{b}}=a-b\left(a,b>0,a\ne b\right)\)
c)\(\left(2+\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)=4-a\left(a>0,a\ne1\right)\)
d)\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)=\left(1-a\right)^2\left(a\ge0,a\ne1\right)\)
Giải giúp mk với. THứ 3 tuần sau là phải nộp rồi
CHỨNG MINH
a) \(\frac{\left(\sqrt{a}+1\right)^2-4\sqrt{a}}{\sqrt{a}-1}+\frac{a+\sqrt{a}}{\sqrt{a}}=2\sqrt{a}\) \(\left(a>0;a\ne1\right)\)
b) \(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\sqrt{xy}\) \(\left(x\ge0;y\ge0\right)\)
c) \(\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}:\frac{a-b}{\sqrt{a}-\sqrt{b}}=1\) \(\left(a>0;b>0;a\ne b\right)\)
d) \(\left[\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\right]:\sqrt{b}=2\) \(\left(a>0;b>0\right)\)
Giúp mình với, cảm ơn mn <3
cau c í mk thấy bn chép sai đề nên mk sửa lại đề rồi bạn xem lại đề rồi so với bài làm của mk nha có j ko hiểu thì ib mk nha
\(a)VT = \dfrac{{{{\left( {\sqrt a + 1} \right)}^2} - 4\sqrt a }}{{\sqrt a - 1}} + \dfrac{{a + \sqrt a }}{{\sqrt a }}\\ = \dfrac{{a + 2\sqrt a + 1 - 4\sqrt a }}{{\sqrt a - 1}} + \dfrac{{\sqrt a \left( {\sqrt a + 1} \right)}}{{\sqrt a }}\\ = \dfrac{{a - 2\sqrt a + 1}}{{\left( {\sqrt a - 1} \right)}} + \sqrt a + 1\\ = \dfrac{{{{\left( {\sqrt a - 1} \right)}^2}}}{{\sqrt a - 1}} + \sqrt a + 1\\ = \sqrt a - 1 + \sqrt a + 1\\ = 2\sqrt a = VP (đpcm) \)
\(b)VT = \dfrac{{x\sqrt x + y\sqrt y }}{{\sqrt x + \sqrt y }} - {\left( {\sqrt x - \sqrt y } \right)^2}\\ = \dfrac{{\left( {\sqrt x + \sqrt y } \right)\left( {x - \sqrt {xy} + y} \right)}}{{\sqrt x + \sqrt y }} - \left( {x - 2\sqrt {xy} + y} \right)\\ = x - \sqrt {xy} + y - x + 2\sqrt {xy} - y\\ = \sqrt {xy} (đpcm)\\ c)VT = \dfrac{{a\sqrt b - b\sqrt a }}{{\sqrt {ab} }}:\dfrac{{a - b}}{{\sqrt a + \sqrt b }}\\ = \dfrac{{\sqrt {ab} \left( {\sqrt a - \sqrt b } \right)}}{{\sqrt {ab} }}.\dfrac{{\sqrt a + \sqrt b }}{{a - b}}\\ = \sqrt a - \sqrt b .\dfrac{{\sqrt a + \sqrt b }}{{a - b}}\\ = \dfrac{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}{{a - b}}\\ = \dfrac{{a - b}}{{a - b}} = 1 (đpcm)\\ d)VT = \left[ {\dfrac{{{{\left( {\sqrt a - \sqrt b } \right)}^2} + 4\sqrt {ab} }}{{\sqrt a + \sqrt b }} - \dfrac{{a\sqrt b - b\sqrt a }}{{\sqrt {ab} }}} \right]:\sqrt b \\ = \dfrac{{a - 2\sqrt {ab} + b + 4\sqrt {ab} }}{{\sqrt a + \sqrt b }} - \dfrac{{\sqrt {ab} \left( {\sqrt a - \sqrt b } \right)}}{{\sqrt {ab} }}:\sqrt b \\ = \dfrac{{{{\left( {\sqrt a + \sqrt b } \right)}^2}}}{{\sqrt a + \sqrt b }} - \left( {\sqrt a - \sqrt b } \right):\sqrt b \\ = \sqrt a + \sqrt b - \sqrt a + \sqrt b :\sqrt b \\ = \dfrac{{2\sqrt b }}{{\sqrt b }} = 2 (đpcm) \)
Câu c đề sai (đã sửa)
Rút gọn
a)\(2\sqrt{a}+3a\sqrt{4ab^2}-2b\sqrt{16a^5}-2\sqrt{25a}\)(a>0;b>0)
b)\(\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}\left(a\ge0;b\ge0;a\ne b\right)\)
c)\(\frac{a\sqrt{a}-b\sqrt{b}}{a-b}-\frac{a-b}{\sqrt{a}-\sqrt{b}}\left(a\ge0;b\ge0;a\ne0\right)\)
Rút gọn:
a) \(\frac{a-b}{\sqrt{a}-\sqrt{b}}\)-\(\frac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\)(\(a\ge0\),\(b\ge0\),\(a\ne b\))
b)\(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)\(\left(a>0,b>0,a\ne b\right)\)
C)\(\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right)\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)\(\left(a>0,a\ne1,a\ne4\right)\)
d)\(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\)\(\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\)\(\left(a>0,b>0,a\ne b\right)\)
e)\(\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right)\):\(\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)\(\left(x>0,x\ne9\right)\)
a) Ta có: \(\frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\frac{a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{a+2\sqrt{ab}+b-a-\sqrt{ab}-b}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\)
b)Sửa đề: \(\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)
Ta có: \(\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}\)
\(=-2\sqrt{b}\)
c) Ta có: \(\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\left(\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)
\(=\frac{\sqrt{a}-2}{3\sqrt{a}}\)
d) Ta có: \(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\)
\(=\left(\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\left(\sqrt{a}+\sqrt{b}\right)}-\sqrt{ab}\right)\left(\frac{\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\right)^2\)
\(=\left(a-\sqrt{ab}+b-\sqrt{ab}\right)\cdot\left(\frac{1}{\sqrt{a}-\sqrt{b}}\right)^2\)
\(=\left(a-2\sqrt{ab}+b\right)\cdot\frac{1}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}=1\)
e) Ta có: \(\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
\(=\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}+\frac{x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)
\(=\frac{3\sqrt{x}+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\frac{3\left(\sqrt{x}+3\right)}{-\left(\sqrt{x}-3\right)\cdot\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)
\(=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\)
C1. Tính:
a) \(\left(3\sqrt{\frac{3}{5}}-\sqrt{\frac{5}{3}}+\sqrt{5}\right)2\sqrt{5}+\frac{2}{3}\sqrt{75}\)
b) \(\left(\sqrt{3}-1\right)^2-\sqrt{\left(1-\sqrt{3}\right)^2}+\sqrt{\left(-3\right)^2.3}\)
C2. Tính
P = \(\frac{a-b}{\sqrt{a}+\sqrt{b}}+\frac{a\sqrt{a}-b\sqrt{b}}{a+b+\sqrt{ab}}\) , \(a\ge0,b\ge0,a\ne b\)
Câu 2:
\( P = \dfrac{{a - b}}{{\sqrt a + \sqrt b }} + \dfrac{{a\sqrt a - b\sqrt b }}{{a + b + \sqrt {ab} }}\\ P = \dfrac{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}{{\left( {\sqrt a + \sqrt b } \right)}} + \dfrac{{\left( {\sqrt a - \sqrt b } \right)\left( {a + \sqrt {ab} + b} \right)}}{{a + b + \sqrt {ab} }}\\ P= \sqrt a - \sqrt b + \sqrt a - \sqrt b \\ P = 2\sqrt a - 2\sqrt b \)
Câu 1:
\(a)\left( {3\sqrt {\dfrac{3}{5}} - \sqrt {\dfrac{5}{3}} + \sqrt 5 } \right)2\sqrt 5 + \dfrac{2}{3}\sqrt {75} \\
= 6\sqrt {\dfrac{{15}}{5}} - 2\sqrt {\dfrac{{25}}{3}} + 10 + \dfrac{{10\sqrt 3 }}{3}\\
= 6\sqrt 3 - \dfrac{{10}}{{\sqrt 3 }} + 10 + \dfrac{{10\sqrt 3 }}{3}\\
= 6\sqrt 3 - \dfrac{{10\sqrt 3 }}{3} + 10 + \dfrac{{10\sqrt 3 }}{3}\\
= 6\sqrt 3 + 10\\
b){\left( {\sqrt 3 - 1} \right)^2} - \sqrt {{{\left( {1 - \sqrt 3 } \right)}^2}} + \sqrt {{{\left( { - 3} \right)}^2}.3} \\
= 3 - 2\sqrt 3 + 1 - \sqrt 3 + 1 + \sqrt {{3^3}} \\
= 5 - 3\sqrt 3 + 3\sqrt 3 \\
= 5\)
RÚT GỌN BIỂU THỨC SAU
\(A=\frac{\sqrt{a}+a\sqrt{a}-\sqrt{b}-b\sqrt{a}}{ab-1}\left(vớia\ge0,b\ge0;ab\ne1\right)\)
\(B=\frac{1+2x}{1+\sqrt{1+2x}}+\frac{1-2x}{1-\sqrt{1-2x}}\)
cmr:
a) \(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)=1\) (với \(a,b\ge0;a\ne b\))
b \(\frac{2+\sqrt{2}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\sqrt{2}\)