Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
duahau tv
Xem chi tiết
Nguyễn Hoàng Minh
20 tháng 10 2021 lúc 7:17

Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)

\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{4}{5}\\ \cos\widehat{B}=\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{3}{5}\\ \tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{4}{3}\\ \cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{3}{4}\)

lê thành nhân
Xem chi tiết
Tấn Lê văn
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 10 2021 lúc 20:32

\(AC=\sqrt{BC^2-AB^2}=4\left(cm\right)\left(pytago\right)\\ \sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{4}{5}\\ \cos\widehat{B}=\sin\widehat{C}=\dfrac{AB}{AC}=\dfrac{3}{5}\\ \tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{4}{3}\\ \cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{3}{4}\)

Quốc Huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 9 2021 lúc 21:00

a: Xét ΔBAC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=5(cm)

b: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=2,4\left(cm\right)\\BH=1,8\left(cm\right)\\CH=3,2\left(cm\right)\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 8 2017 lúc 9:21

Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:

B C 2 = A B 2 + A C 2 = 6 2 + 8 2  = 100

Suy ra: BC = 10 (cm)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Nguyễn Đỗ Thục Quyên
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 8 2021 lúc 18:51

Áp dụng định lý Pitago:

\(AB=\sqrt{AC^2+BC^2}=1,5\left(cm\right)\)

\(sinB=\dfrac{AC}{AB}=0,6\) \(\Rightarrow cosA=sinB=0,6\)

\(cosB=\dfrac{BC}{AB}=0,8\) \(\Rightarrow sinA=cosB=0,8\)

\(tanB=\dfrac{AC}{BC}=\dfrac{3}{4}\) \(\Rightarrow cotA=tanB=\dfrac{3}{4}\)

\(cotB=\dfrac{BC}{AB}=\dfrac{4}{3}\) \(\Rightarrow tanA=cotB=\dfrac{4}{3}\)

Trần Hoàng Anh
Xem chi tiết
Nguyễn Đức Trí
17 tháng 7 2023 lúc 1:59

\(BC^2=AB^2+AC^2=36+64=100=10^2\)

\(\Rightarrow BC=10\left(cm\right)\)

\(SinB=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\Rightarrow SinC=Sin\left(90-B\right)=CosB=\dfrac{3}{5}\)

\(CosB=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\Rightarrow CosC=Cos\left(90-B\right)=SinB=\dfrac{4}{5}\)

\(tanB=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}\Rightarrow tanC=tan\left(90-B\right)=CotB=\dfrac{3}{4}\)

\(CotB=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\Rightarrow cotC=cot\left(90-B\right)=tanB=\dfrac{4}{3}\)

Lê Hương Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 6 2021 lúc 20:27

Đổi AB=60mm=6cm

Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC có 

\(\left\{{}\begin{matrix}\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\\\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\\\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}\\\cot\widehat{B}=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\\\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\\\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\\\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 9 2019 lúc 14:42

Tương tự câu 1

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 1 2019 lúc 10:29

Sử dụng các tỉ số lượng giác, tính được:

sinB = 3 5 ; cosB =  4 5 ; tanB =  3 4 ; cotB =  4 3

=> sinA =  4 5 ; cosA =  3 5 ; tanA =  4 3 ; cotA =  3 4