Cho phương trỡnh bậc hai x2 + 5x + 3 = 0 có hai nghiệm x1; x2. Hãy lập một phương trình bậc hai cú hai nghiệm (x12 + 1 ) và ( x22 + 1)
Cho phương trỡnh bậc hai x^2 + 5x + 3 = 0 có hai nghiệm x1; x2. Hãy lập một phương trình bậc hai cú hai nghiệm (x1^2 + 1 ) và ( x2^2 + 1)
Cho phương trình bậc hai x2+5x+m-3=0 (∗∗) . (m là tham số. Tìm điều kiện của m để phương trình (*) có hai nghiệm x1, x2 thỏa mãn x1<2<x2
Δ=5^2-4(m-3)
=25-4m+12=-4m+27
Để phương trình có 2 nghiệm thì -4m+27>=0
=>m<=27/4
Theo đề, ta có: x1-2<0 và x2-2>0
=>(x1-2)(x2-2)<0
=>x1x2-2(x1+x2)+4<0
=>m-3-2*(-5)+4<0
=>m+1+10<0
=>m<-11
Cho phương trình \(x^2-5x-1=0\) có hai nghiệm x1,x2. Hãy lập phương trình bậc hai có nghiệm \(y_1=x^4_1\) , \(y_2=x^4_2\)
Theo định lí Viet \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=x_1^4+x_2^4=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2-2x_1^2x_2^2=727\\y_1y_2=x_1^4x_2^4=1\end{matrix}\right.\)
Phương trình cần tìm có dạng \(ax^2+bx+c=0\left(1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}-\dfrac{b}{a}=727\\\dfrac{c}{a}=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=-727a\\c=a\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow ax^2-727ax+a=0\)
\(\Leftrightarrow x^2-727x+1=0\)
Nhận thấy rằng phương trình tích (x + 2)(x – 3) = 0, hay phương trình bậc hai x 2 – x – 6 = 0, có hai nghiệm là x 1 = -2, x 2 = 3. Tương tự, hãy lập những phương trình bậc hai mà nghiệm mỗi phương trình là một trong những cặp số sau : x 1 = 2, x 2 = 5
Hai số 2 và 5 là nghiệm của phương trình :
(x – 2)(x – 5) = 0 ⇔ x 2 – 7x + 10 = 0
Nhận thấy rằng phương trình tích (x + 2)(x – 3) = 0, hay phương trình bậc hai x 2 – x – 6 = 0, có hai nghiệm là x 1 = -2, x 2 = 3. Tương tự, hãy lập những phương trình bậc hai mà nghiệm mỗi phương trình là một trong những cặp số sau : x 1 = 0,1, x 2 = 0,2
Hai số 0,1 và 0,2 là nghiệm của phương trình :
(x – 0,1)(x – 0,2) = 0 ⇔ x 2 – 0,3x + 0,02 = 0
Nhận thấy rằng phương trình tích (x + 2)(x – 3) = 0, hay phương trình bậc hai x 2 – x – 6 = 0, có hai nghiệm là x 1 = -2, x 2 = 3. Tương tự, hãy lập những phương trình bậc hai mà nghiệm mỗi phương trình là một trong những cặp số sau : x 1 = -1/2, x 2 = 3
Hai số -1/2 và 3 là nghiệm của phương trình :
(x + 1/2 )(x – 3) = 0 ⇔ 2 x 2 – 5x – 3 = 0
Giả sử x 1 , x 2 là hai nghiệm của phương trình x 2 + px + q = 0. Hãy lập một phương trình bậc hai có hai nghiệm x 1 + x 2 , x 1 x 2
Giả sử x 1 , x 2 la hai nghiệm của phương trình x 2 + px + q = 0
Theo hệ thức Vi-ét ta có: x 1 + x 2 = - p/1 = - p; x 1 x 2 = q/1 = q
Phương trình có hai nghiệm là x 1 + x 2 và x 1 x 2 tức là phương trình có hai nghiệm là –p và q.
Hai số -p và q là nghiệm của phương trình.
(x + p)(x - q) = 0 ⇔ x 2 - qx + px - pq = 0 ⇔ x 2 + (p - q)x - pq = 0
Phương trình cần tìm: x 2 + (p - q)x - pq = 0
Cho phương trình bậc hai ẩn x sau:
x2 - 5x + 4 = 0
a) Chứng minh pt có hai nghiệm x1,x2
b) Tìm u,v biết u = x1 + x2, v = x1.x2
c) Lập phương trình bậc 2 có hai nghiệm là u,v
\(pt:x^2-5x+4=0\)
\(\Delta=\left(-5\right)^2-4.1.4=9>0\)
⇒ pt có 2 nghiệm phân biệt
Theo hệ thức Vi-et ta có:
\(\left\{{}\begin{matrix}x_1+x_2=5\\x_1.x_2=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}u=5\\v=4\end{matrix}\right.\)
Câu c thì chịu :) k hiểu đề lắm
Nhận thấy rằng phương trình tích (x + 2)(x – 3) = 0, hay phương trình bậc hai x 2 – x – 6 = 0, có hai nghiệm là x 1 = -2, x 2 = 3. Tương tự, hãy lập những phương trình bậc hai mà nghiệm mỗi phương trình là một trong những cặp số sau : x 1 = 1 - 2 , x 2 = 1 + 2
Hai số 1 - 2 và 1 + 2 là nghiệm của phương trình :
[x – (1 - 2 )][x – (1 + 2 )] = 0
⇔ x 2 – (1 + 2 )x – (1 - 2 )x + (1 - 2 )(1 + 2 ) = 0
⇔ x 2 – 2x – 1 = 0