Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
An Trịnh Hữu
Xem chi tiết
An Trịnh Hữu
17 tháng 7 2017 lúc 9:24

Ta có:

\(a^2+b^2\ge2ab\)

\(b^2+c^2\ge2bc\)

\(c^2+a^2\ge2ca\)

Cộng vế với vế 3 bất đẳng thức trên ta có:

\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(=>a^2+b^2+c^2\ge ab+bc+ca\)

Dấu \("="\) xảy ra khi \(a=b=c\)

CHÚC BẠN HỌC TỐT........

online toán
17 tháng 7 2017 lúc 9:26

ta có : \(\left(a-b-c\right)^2\ge0\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2-2ab-2bc-2ca\ge0\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2\ge2ab+2bc+2ca\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2\ge2\left(ab+bc+ca\right)\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\forall a;b;c\)

vậy \(a^2+b^2+c^2\ge ab+bc+ca\) với mọi \(a;b;c\) (đpcm)

slyn
Xem chi tiết
Bùi Việt Anh
21 tháng 3 2022 lúc 21:20

a, \(\dfrac{a^2+2ab+b^2}{4}\ge ab\)

\(\Leftrightarrow\)a^2+2ab+b^2>=4ab

\(\Leftrightarrow\)a^2-2ab+b^2>=0

\(\Leftrightarrow\)(a-b)^2>=0 (luôn đúng)

Bùi Việt Anh
21 tháng 3 2022 lúc 21:25

b,\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\) 

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) luôn đúng

nguyễn thị mai hương
Xem chi tiết
Phạm Thị Thùy Linh
5 tháng 5 2019 lúc 13:32

\(a^2+b^2+c^2\ge ab+bc+ca\)\(\left(1\right)\)

\(\Rightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\)\(\ge0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)( luôn đúng với mọi a , b , c )

Vậy Phương trình  \(\left(1\right)\)luôn đúng , hay : 

\(a^2+b^2+c^2\ge ab+bc+ca\)\(\left(đpcm\right)\)

ha nguyen
Xem chi tiết
blua
10 tháng 8 2023 lúc 21:28

tử vế phải là 3 hay 2 vậy bạn.

Nguyễn Khắc Quang
Xem chi tiết
hoàng thị huyền trang
Xem chi tiết

Áp dụng BĐT: \(x^2+y^2+z^2\ge xy+yz+zx\)

Dấu "=" xảy ra khi: x = y =z

Ta có: \(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\ge a^2b^4c^2+b^2c^4a^2+c^2a^4b^2\)

\(=a^2b^2c^2\left(a^2+b^2+c^2\right)\ge a^2b^2c^2\left(ab+bc+ca\right)\)

Vậy \(a^8+b^8+c^8\ge a^2b^2c^2\left(ab+bc+ca\right)\) 

Dấu "=" xảy ra khi a = b = c

hoàng thị huyền trang
14 tháng 1 2018 lúc 9:54

bạn ơi vì sao \(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\)

hoàng thị huyền trang
14 tháng 1 2018 lúc 10:38

hihi... mình biết rồi cảm ơn nha!!!

09.Phạm Trần Duân
Xem chi tiết
Trần Tuấn Hoàng
26 tháng 4 2022 lúc 22:17

-Mình thử trình bày cách làm của mình nhé, bạn xem thử có gì sai sót không hoặc chỗ nào bạn không hiểu thì hỏi mình nhé.

Trần Thu Hà
Xem chi tiết
đề bài khó wá
24 tháng 4 2018 lúc 9:00

Ta có :\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(\text{luôn đúng}\right)\)

=> đpcm

Dấu bằng xảy ra khi a=b=c

Nano Thịnh
Xem chi tiết