Thực hiện phép tính
g) (x + 2)(1 + x - x2 + x3 - x4) - (1 - x)(1 + x +x2 + x3 + x4);
h) (2b2 - 2 - 5b + 6b3)(3 + 3b2 - b); i) (4a - 4a4 + 2a7)(6a2 - 12 - 3a3);
Thực hiện phép tính g) (x + 2)(1 + x - x2 + x3 - x4) - (1 - x)(1 + x +x2 + x3 + x4); a) (x + 1)(1 + x - x2 + x3 - x4) - (x - 1)(1 + x + x2 + x3 + x4); b) ( 2b2 - 2 - 5b + 6b3)(3 + 3b2 - b); c) (4a - 4a4 + 2a7)(6a2 - 12 - 3a3); d) (2ab + 2a2 + b2)(2ab2 + 4a3 - 4a2b) e) (2a3 - 0,02a + 0,4a5)(0,5a6 - 0,1a2 + 0,03a4).
\(a,=x+x^2-x^3+x^4-x^5+1+x-x^2+x^3-x^4-x-x^2+x^3-x^4+x^5+1+x-x^2+x^3-x^4\\ =2x-2x^2+2x^3-2x^4\)
Bài 8.Thực hiện phép nhân:a) (x + 1)(1 + x -x2+ x3-x4) -(x -1)(1 + x + x2+ x3+ x4);b) ( 2b2-2 -5b + 6b3)(3 + 3b2-b)
Bài 8.Thực hiện phép nhân:a) (x + 1)(1 + x -x2+ x3-x4) -(x -1)(1 + x + x2+ x3+ x4);b) ( 2b2-2 -5b + 6b3)(3 + 3b2-b)
a. (x + 1)(1 + x - 2x + 3x - 4x) - (x - 1)(1 + x + 2x + 3x + 4x)
= (x + 1)(1 - 2x) - (x - 1)( 1 + 10x)
= x - 2x2 + 1 - 2x - x - 10x2 + 1 + 10x
= x - 2x - x + 10x - 2x2 - 10x2 + 1 + 1
= 8x - 8x2 + 2
= -8x + 8x + 2
= -(-8x + 8x + 2)
= 8x2 - 8x - 2
= 8x2 - 4x - 4x - 2
= 4x(2x - 1) - 2(2x + 1)
b. (2b2 - 2 - 5b + 6b3)(3 + 3b2 - b)
= (4b - 2 - 5b + 18b)(3 + 6b - b)
= (17b - 2)(3 + 5b)
= 51b + 85b2 - 6 + 10b
= 85b2 + 51b + 10b - 6
= \(51b\left(\dfrac{5}{3}+1\right)+6\left(\dfrac{5}{3}-1\right)\)
Bài 8.Thực hiện phép nhân:a) (x + 1)(1 + x -x2+ x3-x4) -(x -1)(1 + x + x2+ x3+ x4);b) ( 2b2-2 -5b + 6b3)(3 + 3b2-b
Bạn ghi rõ lại đề đi bạn, khó hiểu quá
Bài 1: Thực hiện phép tính
a) (x + 1)(1 + x - x2 + x3 - x4) - (x - 1)(1 + x + x2 + x3 + x4);
b) ( 2b2 - 2 - 5b + 6b3)(3 + 3b2 - b);
c) (4a - 4a4 + 2a7)(6a2 - 12 - 3a3);
d) (2ab + 2a2 + b2)(2ab2 + 4a3 - 4a2b)
e) (2a3 - 0,02a + 0,4a5)(0,5a6 - 0,1a2 + 0,03a4).
Bµi 2. Viết các biểu thức sau dưới dạng đa thức
a) (2a - b)(b + 4a) + 2a(b - 3a);
b) (3a - 2b)(2a - 3b) - 6a(a - b);
c) 5b(2x - b) - (8b - x)(2x - b);
d) 2x(a + 15x) + (x - 6a)(5a + 2x);
Bài 3: Chứng minh rằng các biểu thức sau không phụ thuộc vào biến
a) (y - 5)(y + 8) - (y + 4)(y - 1); b) y4 - (y2 - 1)(y2 + 1);
Bài 3:
a: Ta có: \(\left(y-5\right)\left(y+8\right)-\left(y+4\right)\left(y-1\right)\)
\(=y^2+8y-5y-40-y^2+y-4y+4\)
=-36
b: Ta có: \(y^4-\left(y^2-1\right)\left(y^2+1\right)\)
\(=y^4-y^4+1\)
=1
Bài 2:
a: \(\left(2a-b\right)\left(4a+b\right)+2a\left(b-3a\right)\)
\(=8a^2+2ab-4ab-b^2+2ab-6a^2\)
\(=2a^2-b^2\)
b: \(\left(3a-2b\right)\left(2a-3b\right)-6a\left(a-b\right)\)
\(=6a^2-9ab-4ab+6b^2-6a^2+6ab\)
\(=6b^2-7ab\)
c: \(5b\left(2x-b\right)-\left(8b-x\right)\left(2x-b\right)\)
\(=10bx-5b^2-16bx+8b^2+2x^2-xb\)
\(=3b^2-7xb+2x^2\)
Thực hiện phép tính
1/x+2 + 5/2x2+3x-2
-3x2/x3+11 + 1/x2-x+1 +1/x+1
1/1-x +1/1+x +2/1+x2 +4/1+x4
a) \(\dfrac{1}{x+2}+\dfrac{5}{2x^2+3x-2}\)
\(=\dfrac{1}{x+2}+\dfrac{5}{2x^2+4x-x-2}\)
\(=\dfrac{2x-1}{\left(2x-1\right)\left(x+2\right)}+\dfrac{5}{2x\left(x+2\right)-\left(x+2\right)}\)
\(=\dfrac{2x-1+5}{\left(2x-1\right)\left(x+2\right)}\)
\(=\dfrac{2x+4}{\left(2x-1\right)\left(x+2\right)}\)
\(=\dfrac{2\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)}\)
\(=\dfrac{2}{2x-1}\)
\(---\)
b) \(\dfrac{-3x^2}{x^3+1}+\dfrac{1}{x^2-x+1}+\dfrac{1}{x+1}\) (sửa đề)
\(=\dfrac{-3x^2}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{-3x^2+x+1+x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{-2x^2+2}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{-2\left(x^2-1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{-2\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{-2x+2}{x^2-x+1}\)
\(---\)
c) \(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}\)
\(=\dfrac{1+x}{\left(1-x\right)\left(1+x\right)}+\dfrac{1-x}{\left(1-x\right)\left(1+x\right)}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}\)
\(=\dfrac{1+x+1-x}{1^2-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}\)
\(=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}\)
\(=\dfrac{2\left(1+x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\dfrac{2\left(1-x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\dfrac{4}{1+x^4}\)
\(=\dfrac{2+2x^2+2-2x^2}{1-x^4}+\dfrac{4}{1+x^4}\)
\(=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}\)
\(=\dfrac{4\left(1+x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}+\dfrac{4\left(1-x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}\)
\(=\dfrac{4+4x^4+4-4x^4}{1-x^8}\)
\(=\dfrac{8}{1-x^8}\)
#\(Toru\)
\(\dfrac{1}{x+2}+\dfrac{5}{2x^2+3x-2}\\ =\dfrac{1}{x+2}+\dfrac{5}{\left(2x-1\right)\left(x+2\right)}\\ =\dfrac{2x-1}{\left(2x-1\right)\left(x+2\right)}+\dfrac{5}{\left(2x-1\right)\left(x+2\right)}\\ =\dfrac{2x-1+5}{\left(2x-1\right)\left(x+2\right)}\\ =\dfrac{2x+4}{\left(2x-1\right)\left(x+2\right)}\\ =\dfrac{2\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)}\\ =\dfrac{2}{2x-1}\)
__
`x^3+1` chứ cậu nhỉ?
\(\dfrac{-3x^2}{x^3+1}+\dfrac{1}{x^2-x+1}+\dfrac{1}{x+1}\\ =\dfrac{-3x^2}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{1}{x^2-x+1}+\dfrac{1}{x+1}\\ =\dfrac{-3x^2}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{x^2-x+1}{\left(x-1\right)\left(x^2-x+1\right)}\\ =\dfrac{-3x^2+x+1+x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\\ =\dfrac{-2x^2+2}{\left(x+1\right)\left(x^2-x+1\right)}\\ =\dfrac{-2\left(x^2-1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{-2\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\\ =\dfrac{-2\left(x-1\right)}{x^2-x+1}\)
__
Thực hiện phép chia:
a) ( x 3 - x 2 - 5x - 3) : (x - 3);
b) ( x 4 + x 3 - 6 x 2 -5x + 5) : ( x 2 + x - 1).
a) Đây là phép chia ết với đa thức thương x 2 + 2x + 1.
Có thể kiểm tra lại kết quả bằng cách thực hiện nhân hai đa thức (x – 3)( x 2 + 2x +1)
b) Đa thức thương x 2 – 5.
Thực hiện phép chia:
a) ( x 3 - 3x - 2) : (x - 2);
b) ( x 3 + 6 x 2 + 8x - 3): ( x 2 + 3x -1);
c) (2 x 4 – 7 x 3 + 9 x 2 - 7x + 2): (2 x 2 - 5x + 2).
a) x 2 + 2x + 1. b) x + 3. c) x 2 – x + 1.
g) (x + 2)(1 + x - x2 + x3 - x4) - (1 - x)(1 + x +x2 + x3 + x4);
\(=x+x^2-x^3+x^4-x^5+2+2x-2x^2+2x^3-2x^4-\left(1+x+x^2+x^3+x^4-x-x^2-x^3-x^4-x^5\right)\\ =2+3x-x^2+x^3-x^4-x^5-1\\ =-x^5-x^4+x^3-x^2+3x+1\)
Thực hiện phép tính:
a,(2x- 4)(x+9)
b,(x2 + 4x +3)(x-2)
c,(x-8)(x+8)
d, x2(7x-5)-7(x3- 4x+6)
e,(x2+2)(x2+x+1)
f,(x2+2)(x4-2x2+4)
g,(x-g)(x+9)
h,(x-2)(2x3-x2+1)+(x2+1)+(x2-2x2)(1-2)x
Dễ
Thế
Mà
Cũnhoir
Dc
Ạ
Chịu
Chắc
Phải
Ngu
Lamqs
Mới
Hỏi
Câu
Này