\(\frac{x-1}{x+1}-\frac{x+1}{x-1}=\frac{1-mx}{x^2-1}\)
Tìm m để hàm số sau xác định với mọi \(x\in R\)
\(y=\ln\left(\frac{x^2-mx+1}{x^2-x+1}-\frac{1}{2}\right)+\sqrt{\frac{3}{2}-\frac{x^2-mx+1}{x^2-x+1}}\)
Hàm số xác định với mọi \(x\in R\Leftrightarrow\begin{cases}\frac{x^2-mx+1}{x^2-x+1}>\frac{2}{3}\\\frac{x^2-mx+1}{x^2-x+1}\le\frac{2}{3}\end{cases}\) với mọi \(x\in R\)
\(\Leftrightarrow\begin{cases}x^2-\left(3m-2\right)x+1>0\\x^2+\left(2m-3\right)x+1\ge0\end{cases}\)
\(\Leftrightarrow\begin{cases}\Delta_1=9m^2-12m< 0\\\Delta_2=4m^2-12m+5\le0\end{cases}\)
\(\Leftrightarrow\begin{cases}0< m< \frac{4}{3}\\\frac{1}{2}\le m\le\frac{5}{2}\end{cases}\)
\(\Leftrightarrow\frac{1}{2}\le m< \frac{4}{3}\)
Vậy \(\frac{1}{2}\le m< \frac{4}{3}\) thì hàm số đã cho xác định với mọi \(x\in R\)
giải PT sau :\(\frac{3x+2}{x+4}+\frac{2x+1}{x-2}=5-\frac{x-32}{x^2+2x-8}\)
:\(\frac{x+2m}{x+3}+\frac{x-m}{x-3}=\frac{mx\left(x+1\right)}{x^2-9}\)
\(\frac{3x+2}{x+4}+\frac{2x+1}{x-2}=5-\frac{x-32}{x^2+2x-8}\)
\(\Leftrightarrow\) \(\frac{\left(3x+2\right)\left(x-2\right)}{\left(x+4\right)\left(x-2\right)}+\frac{\left(2x+1\right)\left(x+4\right)}{\left(x+4\right)\left(x-2\right)}=\frac{5\left(x+4\right)\left(x-2\right)}{\left(x+4\right)\left(x-2\right)}-\frac{x-32}{\left(x+4\right)\left(x-2\right)}\)
\(\Rightarrow\) (3x + 2)(x - 2) + (2x + 1)(x + 4) = 5(x + 4)(x - 2) - x + 32
\(\Leftrightarrow\) 3x2 - 6x + 2x - 4 + 2x2 + 8x + x + 4 = 5x2 - 10x + 20x - 40 - x + 32
\(\Leftrightarrow\) 5x2 + 5x = 5x2 + 9x - 8
\(\Leftrightarrow\) 5x2 + 5x - 5x2 - 9x + 8 = 0
\(\Leftrightarrow\) -4x + 8 = 0
\(\Leftrightarrow\) x - 2 = 0
\(\Leftrightarrow\) x = 2
Vậy S = {2}
\(\frac{x+2m}{x+3}+\frac{x-m}{x-3}=\frac{mx\left(x+1\right)}{x^2-9}\) (đkxđ: x \(\ne\) \(\pm\) 3)
\(\Leftrightarrow\) \(\frac{\left(x+2m\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{\left(x-m\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{mx\left(x+1\right)}{\left(x+3\right)\left(x-3\right)}\)
\(\Rightarrow\) (x + 2m)(x - 3) + (x - m)(x + 3) = mx(x + 1)
\(\Leftrightarrow\) x2 - 3x + 2mx - 6m + x2 + 3x - mx - 3m - mx2 - mx = 0
\(\Leftrightarrow\) (2 - m)x2 - 9m = 0
Thay m = 1 ta được:
(2 - 1)x2 - 9 . 1 = 0
\(\Leftrightarrow\) x2 - 9 = 0
\(\Leftrightarrow\) (x - 3)(x + 3) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(KTM\right)\\x=-3\left(KTM\right)\end{matrix}\right.\)
Vậy S = \(\varnothing\)
Thay m = 2 ta được:
(2 - 2)x2 - 9 . 2 = 0
\(\Leftrightarrow\) -18 = 0
\(\Rightarrow\) Pt vô nghiệm
Vậy S = \(\varnothing\)
Chúc bn học tốt!!
giải và biện luận các phương trình sau:
a) \(\frac{mx-m+1}{x+2}=3\)
b) \(\frac{mx+m-2}{x-m}=3\)
c) \(\frac{x-m}{x-1}+\frac{x-1}{x-m}=2\)
-giúp mình với ạ-
\(choP=\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}}{2}+\frac{1}{2\sqrt{x}}\right)a;R\text{ú}tg\text{ọ}nP....b;T\text{í}nhPkhiX=3-2\sqrt{2}c;t\text{ì}mX\text{đ}\text{ể}P=1\)
p=\(\left(\frac{3}{\sqrt{x}-1}+\frac{\sqrt{x}-3}{x-1}\right):\left(\frac{x+2}{x+\sqrt{x}-2}-\frac{\sqrt{x}}{\sqrt{x+2}}\right)\)
a) rg p
b) tính gt của p biết \(x=\frac{2-\sqrt{3}}{2}\)
c) tìm các giá trị của m để có gt x thỏa mãn: \(\left(\sqrt{x}+1\right)p+mx=mx\sqrt{x}+4\)
Biết pt (x-1)(x-2)(x-3)(x-6)=mx2 có 4 nghiệm x1,x2,x3,x4 đều khác 0.
Tính P =\(\frac{1}{x_1}\)+\(\frac{1}{x_2}\)+\(\frac{1}{x_3}\)+\(\frac{1}{x_4}\)
Giả và biện luận các pt sau:
\(\)1) \(\frac{ax-1}{x-1}+\frac{b}{x+1}=\frac{a\left(x^2+1\right)}{x^2-1}\)
2) \(\frac{a}{ax-1}+\frac{b}{bx-1}=\frac{a+b}{\left(a+b\right)x-1}\)
3)\(\left|2x+m\right|=\left|2m-x\right|\)
4) \(\left|mx+1\right|=\left|3x+m-2\right|\)
Giai va bien luan cac phuong trinh sau:
1. \(\frac{a+b-x}{c}+\frac{a+c-x}{b}+\frac{b+c-x}{a}+\frac{4x}{a+b+c}=1\)
(an x) voi dk; a,b,b khac 0 va a+b+c khac 0
2.\(\frac{x-a}{bc}+\frac{x-b}{ac}+\frac{x-c}{ab}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
(an x) voi dk: a,b,c khac 0
3, \(\frac{mx+3}{6}+\frac{m^2-1}{2}=\frac{x+5}{10}+\frac{2}{5}\left(x+m^2+1\right)\)
(an x)