Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Công Hiếu
Xem chi tiết
Fa Châu De
24 tháng 10 2019 lúc 22:26

Nếu x lớn hơn hoặc bằng 2, có:

|x - 2|(x - 1)(x + 1)(x + 2) = 4

(x - 2)(x + 2)(x - 1)(x + 1) = 4

(x2 - 4)(x2 - 1) = 4

x4 - 4x2 + 4 = 4

(x2 - 2)2 = 4 => x2 - 2 = 2 => x2 = 4 => x = 2

Nếu x nhỏ hơn 2, có:

|x - 2|(x - 1)(x + 1)(x + 2) = 4

(2 - x)(2 + x)(x - 1)(x + 1) = 4

(4 - x2)(x2 - 1) = 4

5x2 - x4 - 4 = 4

x2 - (x4 - 4x2 + 4) = 4

x2 - 4 - (x2 - 2)2 = 0

(x ​- 2)(x + 2) - (x2 - 2)2 = 0

Khách vãng lai đã xóa
Kim TaeHyung
Xem chi tiết
Nguyễn Thị Ngọc Thơ
13 tháng 8 2020 lúc 21:54

\(\Leftrightarrow x^2+2x+1+\left|x-1\right|=x^2+4\)

\(\Leftrightarrow\left|x-1\right|=3-2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=3-2x\\x-1=2x-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{3}\\x=2\end{matrix}\right.\)

Đặng Hồng Phong
Xem chi tiết
Kaito Kid
30 tháng 3 2022 lúc 19:27

a)\(\dfrac{7x-1}{2}+2x=\dfrac{16-x}{3}\)

\(\dfrac{\left(7x-1\right).3}{2.3}+\dfrac{2x.6}{6}=\dfrac{\left(16-x\right)2}{3.2}\)

khử mẫu 

=> (7x-1).3+12x=(16-x).2

=>21x-3+12x=-2x+32

=>21x-3+12x+2x-32=0

=>35x-35=0

 

Kaito Kid
30 tháng 3 2022 lúc 19:36

 

b)\(\dfrac{x+1}{x-2}+\dfrac{x-1}{x+2}=\dfrac{2\left(x^2+2\right)}{x^2-4}\)

ĐKXĐ: x khác +-2

\(\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x^2+2\right)}{\left(x-2\right)\left(x+2\right)}\)

khử mẫu

(x+1).(x+2)+(x-1)(x-2)=2x2+4

=>x2+x+2+x+2+x2-2x-x+2=2x2+4

=>x2+x+2+x+2+x2-2x-x+2-2x2-4=0

=>(x2+x2-2x2)+(x+x-2x-x)+(2+2+2-4)=0

=>-x+2=0

=>-x=-2

=>x=2(loại)

vậy pt vô nghiệm

Phương Minh nguyễn
Xem chi tiết
Hoàng Thị Lan Hương
25 tháng 7 2017 lúc 9:34

Ta có \(4\left(x-1\right)^2-\left(x+1\right)^2=x+13\Leftrightarrow4\left(x^3-3x^2+3x-1\right)-\left(x^2+2x+1\right)=x+13\)

\(\Leftrightarrow4x^3-12x^2+12x-4-x^2-2x-1-x-13=0\)

\(\Leftrightarrow4x^3-13x^2+9x-18=0\)\(\Leftrightarrow\left(4x^3-12x^2\right)-\left(x^2-3x\right)+\left(6x-18\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(4x^2-x+6\right)=0\Leftrightarrow\orbr{\begin{cases}x-3=0\\4x^2-x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\4x^2-x+6=0\left(1\right)\end{cases}}}\)

Ta thấy (1) vô nghiệm vì \(\Delta=1-24=-23< 0\)

Vậy phương trình có nghiệm x=3

Nguyễn Huyền Trâm
Xem chi tiết
Đặng Thị Vân Anh
13 tháng 2 2020 lúc 20:06

câu a bài 1:(2x+1)(3x-2)=(5x-8)(2x+1)

<=>(2x+1)(3x-2)-(5x-8)(2x+1)=0

<=>(2x+1)(3x-2-5x+8)=0

<=>(2x+1)(6-2x)=0

bước sau tự làm nốt nha !

câu b:gợi ý: tách 4x^2-1thành (2x-1)(2x+1) rồi làm như câu a

Khách vãng lai đã xóa
Nguyễn Lê Phước Thịnh
31 tháng 7 2022 lúc 9:54

Bài 2: 

a: \(\dfrac{1}{2x-3}-\dfrac{3}{x\left(2x-3\right)}=\dfrac{5}{x}\)

\(\Leftrightarrow x-3=5\left(2x-3\right)=10x-15\)

=>-9x=-12

hay x=4/3

b: \(\Leftrightarrow x\left(x+2\right)-x+2=2\)

=>x2+2x-x+2=2

=>x2+x=0

=>x=0(loại) hoặc x=-1(nhận)

c: \(\dfrac{x+1}{x-2}+\dfrac{x-1}{x+2}=\dfrac{2\left(x^2+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow x^2+3x+2+x^2-3x+2=2x^2+4\)

=>4=4(luôn đúng)

Vậy: S={x|x<>2; x<>-2}

Phạm Dương Ngọc Nhi
Xem chi tiết
Đặng Hồng Phong
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 3 2022 lúc 21:58

\(\Leftrightarrow16-3\left(x+1\right)< 24+2\left(x-1\right)\)

=>16-3x-3<24+2x-2

=>-3x+13<2x+22

=>-5x<9

hay x>-9/5

Messi
Xem chi tiết
KAl(SO4)2·12H2O
12 tháng 3 2020 lúc 23:41

\(\frac{x}{x+1}+\frac{x+1}{x+2}+\frac{x+2}{x}=\frac{25}{6}\)

<=> 6x2(x + 2) + 6x(x + 1)2 + 6(x + 2)2(x + 1) = 25x(x + 1)(x + 2)

<=> 18x2 + 54x+ 54x + 24 = 25x3 + 75x2 + 50x

<=> 18x2 + 54x2 + 54x + 24 - 25x2 - 75x2 - 50x = 0

<=> -7x3 - 21x2 + 4x + 24 = 0

<=> (-7x2 - 28x - 24)(x - 1) = 0

vì 7x2 + 28x + 24 khác 0 nên:

<=> x - 1 = 0

<=> x = 0

Khách vãng lai đã xóa
Trịnh Hữu Khôi
Xem chi tiết
HT.Phong (9A5)
24 tháng 10 2023 lúc 19:05

\(4x^2-5x-4\sqrt{x-1}-2=0\left(x\ge1\right)\)

\(\Leftrightarrow\left(4x^2-4x+1\right)-\left(x-1+4\sqrt{x-1}+4\right)=0\)

\(\Leftrightarrow\left(2x-1\right)^2-\left(\sqrt{x-1}+2\right)^2=0\)

\(\Leftrightarrow\left(2x-1-\sqrt{x-1}-2\right)\left(2x-1+\sqrt{x-1}+2\right)=0\)

\(\Leftrightarrow\left(2x-\sqrt{x-1}-3\right)\left(2x+\sqrt{x-1}+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=2x-3\\\sqrt{x-1}=-\left(2x+1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x\in\varnothing\end{matrix}\right.\)

Vậy với x = 2 thì thỏa mãn pt