Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Quốc Tuấn
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 4 2020 lúc 21:16

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{26x+5}=a\ge0\\\sqrt{x^2+30}=b>0\end{matrix}\right.\)

\(\Rightarrow\frac{a^2}{b}+2a=3b\)

\(\Leftrightarrow a^2+2ab-3b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+3b\right)=0\)

\(\Leftrightarrow a-b=0\)

\(\Leftrightarrow\sqrt{26x+5}=\sqrt{x^2+30}\)

\(\Leftrightarrow x^2-26x+25=0\Rightarrow\left[{}\begin{matrix}x=1\\x=25\end{matrix}\right.\)

Khách vãng lai đã xóa
Trương Tú Nhi
Xem chi tiết
Trương Tú Nhi
31 tháng 10 2019 lúc 19:55

Akai HarumaBăng Băng 2k6HISINOMA KINIMADO

Vũ Minh TuấnNguyễn Thanh Hằng

Khách vãng lai đã xóa
btkho
Xem chi tiết
Harry James Potter
Xem chi tiết
Tran Le Khanh Linh
1 tháng 5 2020 lúc 12:17

\(\sqrt{29-x}+\sqrt{x+3}=x^2-26x+177\left(1\right)\)

ĐK -3 =<x =<29

Với mọi a,b >=0 ta có:

\(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge2ab\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow a+b\le\sqrt{2\left(a^2+b^2\right)}\)

Thay \(a=\sqrt{29-x};b=\sqrt{x+3}\)ta có:

\(\sqrt{29-x}+\sqrt{x+3}\le\sqrt{2\left(29-x+x+3\right)}=8\)

\(x^2-26x+177=\left(x-13\right)^2+8\ge8\)

\(\Rightarrow\sqrt{29-x}+\sqrt{x+3}\le x^2-26x+177\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\sqrt{29-x}=\sqrt{x+3}\\x-13=0\end{cases}\Leftrightarrow x=13}\)

Do đó (1) <=> x=13 (tm)

Khách vãng lai đã xóa
Trang-g Seola-a
Xem chi tiết
Phùng Gia Bảo
Xem chi tiết
Sói Vương
28 tháng 11 2019 lúc 18:41

mị mới lớp 5 ahihi

Khách vãng lai đã xóa
tth_new
29 tháng 11 2019 lúc 9:08

ĐK: \(12\le x\le14\)

Sau khi nhân liên hợp chúng ta có được:

\(PT\Leftrightarrow\left(x-13\right)^2\left[1+\frac{\frac{2}{1+\sqrt{\left(x-12\right)\left(14-x\right)}}}{2+\sqrt{x-12}+\sqrt{14-x}}\right]=0\)

\(\Leftrightarrow x=13\)

Khủng khiếp tí nhưng chắc không sao:v

Khách vãng lai đã xóa
fan FA
Xem chi tiết
Nguyễn Trung Hiếu
Xem chi tiết
ngonhuminh
17 tháng 1 2017 lúc 16:58

Nhìn không đủ chán rồi không dám động vào

Vũ Như Mai
17 tháng 1 2017 lúc 17:05

Viết đề kiểu gì v @@

Vũ Như Mai
17 tháng 1 2017 lúc 17:12

À do nãy máy lag sr :) Chứ bài đặt ẩn phụ mệt lắm :)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
26 tháng 9 2023 lúc 23:23

a) \(\sqrt {11{x^2} - 14x - 12}  = \sqrt {3{x^2} + 4x - 7} \)

\(\begin{array}{l} \Rightarrow 11{x^2} - 14x - 12 = 3{x^2} + 4x - 7\\ \Rightarrow 8{x^2} - 18x - 5 = 0\end{array}\)

\( \Rightarrow x =  - \frac{1}{4}\) và \(x = \frac{5}{2}\)

Thay nghiệm vừa tìm được vào phương trình \(\sqrt {11{x^2} - 14x - 12}  = \sqrt {3{x^2} + 4x - 7} \) ta thấy chỉ có nghiệm \(x = \frac{5}{2}\) thảo mãn phương trình

Vậy nhiệm của phương trình đã cho là \(x = \frac{5}{2}\)

b) \(\sqrt {{x^2} + x - 42}  = \sqrt {2x - 30} \)

\(\begin{array}{l} \Rightarrow {x^2} + x - 42 = 2x - 3\\ \Rightarrow {x^2} - x - 12 = 0\end{array}\)

\( \Rightarrow x =  - 3\) và \(x = 4\)

Thay vào phương trình \(\sqrt {{x^2} + x - 42}  = \sqrt {2x - 30} \)  ta thấy  không có nghiệm nào thỏa mãn

Vậy phương trình đã cho vô nghiệm

c) \(2\sqrt {{x^2} - x - 1}  = \sqrt {{x^2} + 2x + 5} \)

\(\begin{array}{l} \Rightarrow 4.\left( {{x^2} - x - 1} \right) = {x^2} + 2x + 5\\ \Rightarrow 3{x^2} - 6x - 9 = 0\end{array}\)

\( \Rightarrow x =  - 1\) và \(x = 3\)

Thay hai nghiệm trên vào phương trình \(2\sqrt {{x^2} - x - 1}  = \sqrt {{x^2} + 2x + 5} \) ta thấy cả hai nghiệm đếu thỏa mãn phương trình

Vậy nghiệm của phương trình \(2\sqrt {{x^2} - x - 1}  = \sqrt {{x^2} + 2x + 5} \) là \(x =  - 1\) và \(x = 3\)

d) \(3\sqrt {{x^2} + x - 1}  - \sqrt {7{x^2} + 2x - 5}  = 0\)

\(\begin{array}{l} \Rightarrow 3\sqrt {{x^2} + x - 1}  = \sqrt {7{x^2} + 2x - 5} \\ \Rightarrow 9.\left( {{x^2} + x - 1} \right) = 7{x^2} + 2x - 5\\ \Rightarrow 2{x^2} + 7x - 4 = 0\end{array}\)

\( \Rightarrow x =  - 4\) và \(x = \frac{1}{2}\)

Thay hai nghiệm trên vào phương trình \(3\sqrt {{x^2} + x - 1}  - \sqrt {7{x^2} + 2x - 5}  = 0\) ta thấy chỉ có nghiệm \(x =  - 4\) thỏa mãn phương trình

Vậy nghiệm của phương trình trên là \(x =  - 4\)