\(\frac{\left(-3x^2+3x-1\right)\left(2x-4\right)}{x^2+3x}\)
1,Giải PT sau
a,\(\frac{4}{5}x-3=\frac{1}{5}x\left(4x-15\right)\)
b,(x-3)-\(\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)
c,\(\frac{\left(3x+1\right)\left(3x-2\right)}{3}+5\left(3x+1\right)=\) \(\frac{2\left(2x+1\right)\left(3x+1\right)}{3}+2x\left(3x+1\right)\)
Bài 1:
a) Ta có: \(\frac{4}{5}x-3=\frac{1}{5}x\left(4x-15\right)\)
\(\Leftrightarrow\frac{4x}{5}-3=\frac{4x^2}{5}-3x\)
\(\Leftrightarrow\frac{12x}{15}-\frac{45}{15}-\frac{12x^2}{15}+\frac{45x}{15}=0\)
Suy ra: \(12x-45-12x^2+45x=0\)
\(\Leftrightarrow-12x^2+57x-45=0\)
\(\Leftrightarrow-12x^2+12x+45x-45=0\)
\(\Leftrightarrow-12x\left(x-1\right)+45\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-12x+45\right)=0\)
\(\Leftrightarrow-3\left(x-1\right)\left(4x-15\right)=0\)
mà \(-3\ne0\)
nên \(\left[{}\begin{matrix}x-1=0\\4x-15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\4x=15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{15}{4}\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{1;\frac{15}{4}\right\}\)
b) Ta có: \(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)
\(\Leftrightarrow\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}+\frac{\left(x-3\right)^2}{4}=0\)
\(\Leftrightarrow\frac{12\left(x-3\right)}{12}-\frac{2\left(x-3\right)\left(2x-5\right)}{12}+\frac{3\left(x-3\right)^2}{12}=0\)
Suy ra: \(12\left(x-3\right)-2\left(2x^2-11x+15\right)+3\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow12x-36-4x^2+22x-30+3x^2-18x+27=0\)
\(\Leftrightarrow-x^2+16x-39=0\)
\(\Leftrightarrow-\left(x^2-16x+39\right)=0\)
\(\Leftrightarrow x^2-13x-3x+39=0\)
\(\Leftrightarrow x\left(x-13\right)-3\left(x-13\right)=0\)
\(\Leftrightarrow\left(x-13\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-13=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\\x=3\end{matrix}\right.\)
Vậy: Tập nghiệm S={3;13}
c) Ta có: \(\frac{\left(3x+1\right)\left(3x-2\right)}{3}+5\left(3x+1\right)=\frac{2\left(2x+1\right)\left(3x+1\right)}{3}+2x\left(3x+1\right)\)
\(\Leftrightarrow\frac{9x^2-3x-2}{3}+5\left(3x+1\right)-\frac{12x^2+10x+2}{3}-2x\left(3x+1\right)=0\)
\(\Leftrightarrow\frac{9x^2-3x-2-12x^2-10x-2}{3}-6x^2+13x+5=0\)
\(\Leftrightarrow\frac{-3x^2-13x-4}{3}+\frac{3\left(-6x^2+13x+5\right)}{3}=0\)
Suy ra: \(-3x^2-13x-4-18x^2+39x+15=0\)
\(\Leftrightarrow-21x^2+26x+11=0\)
\(\Leftrightarrow-21x^2-7x+33x+11=0\)
\(\Leftrightarrow-7x\left(3x+1\right)+11\left(3x+1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(-7x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-7x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\-7x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=\frac{11}{7}\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{-\frac{1}{3};\frac{11}{7}\right\}\)
bài 2
a 0,75x (x +5 )= x+5 (3- 1,25x)
b\(\frac{4}{5}x-3=\frac{1}{5}x\left(4x-15\right)\)
c(x-3) -\(\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)
d \(\frac{\left(3x+1\right)\left(3x-2\right)}{3}+5\left(3x+1\right)=\frac{2\left(2x+1\right)\left(3x+1\right)}{3}+2x\left(3x+1\right)\)
tính(rút gọn)
a,\(\left(x+3-\frac{1}{x+3}\right)\left(x+\frac{3}{x+4}\right)\)
b,\(\left(2x-4-\frac{x-12}{3x+4}\right)\left(3x-2-\frac{10}{2x+1}\right)\)
c,\(\left(2x-8-\frac{x+10}{3x+1}\right)\left(x-6-\frac{x-6}{3x+2}\right)\)
d,\(\left(1+\frac{1}{x}\right):\left(1-\frac{1}{x^2}\right)\)
Rút gon biểu thức sau
a) \(\left(x-5\right)\left(2x+3\right)+2x\left(1-x\right)\)
b) \(\left(3x-5\right)^2-\left(x+5\right)\left(5-x\right)-\frac{5}{2}\left(-2x\right)^2\)
c) \(\left(3x+2\right)\left(4-6x+9x^2\right)-3x\left(3x-2\right)^2+12\left(-\frac{2}{3}-3x^2\right)\)
a) ( x - 5 )( 2x + 3 ) + 2x( 1 - x )
= 2x2 - 7x - 15 + 2x - 2x2
= -5x - 15
= -5( x + 3 )
b) ( 3x - 5 )2 - ( x + 5 )( 5 - x ) - 5/2( -2x )2
= 9x2 - 30x + 25 + ( x + 5 )( x - 5 ) - 5/2.4x2
= 9x2 - 30x + 25 + x2 - 25 - 10x2
= -30x
c) ( 3x + 2 )( 4 - 6x + 9x2 ) - 3x( 3x - 2 )2 + 12( -2/3 - 3x2 )
= ( 3x )3 + 23 - 3x( 9x2 - 12x + 4 ) - 8 - 36x2
= 27x3 + 8 - 27x3 + 36x2 - 12x - 8 - 36x2
= -12x
a, \(\left(x-5\right)\left(2x+3\right)+2x\left(1-x\right)=2x^2+3x-10x-15+2x-2x^2=-5x-15\)
b, \(\left(3x-5\right)^2-\left(x+5\right)\left(5-x\right)-\frac{5}{2}\left(-2x\right)^2\)
\(=9x^2-30x+25-\left(5x-x^2+25-5x\right)-\frac{5}{2}\left(4x^2\right)\)
\(=-30x\)
Tìm x :
a) \(\frac{3x+2}{2}-\frac{3x+1}{6}=2x+\frac{5}{3}\)
b) \(\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)
c) \(\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)
d) \(\left(x+1\right)^2-4\left(x^2-2x+1\right)=0\)
a) Qui đồng rồi khử mẫu ta được:
3(3x+2)-(3x+1)=2x.6+5.2
<=> 9x+6-3x-1 = 12x+10
<=> 9x-3x-12x = 10-6+1
<=> -6x = 5
<=> x = -5/6
Vậy ....
b) ĐKXĐ: \(x\ne\pm2\)
Qui đồng rồi khử mẫu ta được:
(x+1)(x+2)+(x-1)(x-2) = 2(x2+2)
<=> x2+3x+2+x2-3x+2 = 2x2+4
<=> x2+x2-2x2+3x-3x = 4-2-2
<=> 0x = 0
<=> x vô số nghiệm
Vậy x vô số nghiệm với x khác 2 và x khác -2
c) \(\left(2x+3\right)\left(\frac{3x+7}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\) (ĐKXĐ:x khắc 2/7)
\(\Leftrightarrow\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)-\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)=0\)
\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left[\left(2x+3\right)-\left(x-5\right)\right]=0\)
\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}+1=0\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}=-1\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x+8=-1\left(2-7x\right)\\x=0-8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x+8=-2+7x\\x=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}-4x=-10\\x=-8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-8\end{cases}}}\) (nhận)
Vậy ......
d) (x+1)2-4(x2-2x+1) = 0
<=> x2+2x+1-4x2+8x-4 = 0
<=> -3x2+10x-3 = 0
giải phương trình
a,\(\frac{3}{x}+\frac{1}{x+3}+\frac{3}{x+6}+\frac{1}{x+7}=\frac{1}{1-x}\)
b, \(\frac{1}{x-5}+\frac{1}{x-2}+\frac{1}{x-1}+\frac{1}{x}+\frac{1}{x+3}=\frac{3x-3}{4}\)
c,\(\frac{1}{x-3}+\frac{1}{3x+1}+\frac{10x-13}{4x-6}=\frac{1}{x+1}+\frac{1}{2x-1}+\frac{1}{3x+7}\)
d,\(\frac{x^2+x+1}{2x-1}\left(\frac{3x^2-x+5}{4x-2}-3\right)=8\)
e,\(\frac{2x^2-3}{3x-1}\left(2x-\frac{7+4x}{3x-1}\right)=2\)
f,\(\frac{x\left(3x-1\right)\left(3x^2+1\right)\left(6x^2-3x-1\right)}{\left(x+1\right)^3}=\frac{1}{2}\)
g, \(x\left(x^2+2\right)\left(x^2+2x+8+\frac{12}{x-2}\right)=3\left(x-2\right)\)
1)2x(25x-4)-(5x-2)(5x+1)=8 / 5)\(2\left(x-2\right)-3\left(3x-1\right)=\left(x-3\right)\)
2)x(4x-3)-(2x-2)(2x-1)=5 / 6)\(\frac{2}{x+1}-\frac{1}{x-2}=\frac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
3)\(\frac{5}{2x+3}+\frac{3}{9-x^2}=\frac{8}{7\left(x=3\right)}\) / 7)\(\frac{5x-2}{6}+\frac{3-4x}{2}=2-\frac{x+7}{3}\)
4)\(\frac{2}{3\left(x-2\right)}+\frac{5}{12-3x^2}=\frac{3}{4\left(x+2\right)}\) / 8)\(\frac{2}{x+1}-\frac{1}{x-2}=\frac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
Đây là lớp 8 nha các b giúp mk với
Do mk viết nhầm
Tìm x : \(\frac{2\left(x-1\right)\left(x-3\right)}{3}-\frac{4\left(2x-1\right)^2}{5}=\frac{\left(1+3x\right)^2}{2}-3x\left(1-x\right)\)
\(\Leftrightarrow20\left(x^2-4x+3\right)-24\left(4x^2-4x+1\right)=15\left(9x^2+6x+1\right)+90x\left(x-1\right)\)
\(\Leftrightarrow20x^2-80x+60-96x^2+96x-24=135x^2+90x+15+90x^2-90x\)
\(\Leftrightarrow-301x^2+16x+21=0\)
\(\text{Δ}=16^2-4\cdot\left(-301\right)\cdot21=25540\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là
\(\left\{{}\begin{matrix}x_1=\dfrac{-16-\sqrt{25540}}{-602}=\dfrac{16+\sqrt{25540}}{602}\\x_2=\dfrac{16-\sqrt{25540}}{602}\end{matrix}\right.\)
\(\left(2x+3\right)^2+\left(3x-2\right)^4=0\) vì \(\left(2x+3\right)^2\ge0;\left(3x-2\right)^4\ge0\) nên\(\Rightarrow\hept{\begin{cases}\left(2x+3\right)^2=0\\\left(3x-2\right)^4=0\end{cases}\Rightarrow\hept{\begin{cases}2x+3=0\\3x-2=0\end{cases}}}\) \(\Rightarrow\hept{\begin{cases}x=-\frac{3}{2}\\x=\frac{2}{3}\end{cases}}\)
giải các hệ BPT sau:
a) \(\left\{{}\begin{matrix}5x-2>4x+5\\5x-4< x+2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2x+1>3x+4\\5x+3\ge8x-9\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\frac{5x+2}{3}\ge4-x\\\frac{6-5x}{13}< 3x+1\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}\frac{4x-5}{7}< x+3\\\frac{3x+8}{4}>2x-5\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}6x+\frac{5}{7}< 4x+7\\\frac{8x+3}{2}< 2x+5\end{matrix}\right.\)
f) \(\left\{{}\begin{matrix}15x-2>2x+\frac{1}{3}\\2\left(x-4\right)< \frac{3x-14}{2}\end{matrix}\right.\)
g) \(\left\{{}\begin{matrix}x-1\le2x-3\\3x< x+5\\5-3x\le2x-6\end{matrix}\right.\)
h) \(\left\{{}\begin{matrix}2x+\frac{3}{5}>\frac{3\left(2x-7\right)}{3}\\x-\frac{1}{2}< \frac{5\left(3x-1\right)}{2}\end{matrix}\right.\)
j) \(\left\{{}\begin{matrix}\frac{3x+1}{2}-\frac{3-x}{3}\le\frac{x+1}{4}-\frac{2x-1}{3}\\3-\frac{2x+1}{5}>x+\frac{4}{3}\end{matrix}\right.\)