Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tiến Đạt
Xem chi tiết
missing you =
29 tháng 5 2021 lúc 19:46

a,xét tam giác ACH và tam giác DCH có:

HA=HD(gt)

góc CHA= góc CHD(vì CH\(\perp\)AD)

HC chung => tam giác ACH=tam giác DCH(c.g.c)

tam giác ADC có CH vừa là trung tuyến đồng thời là đường cao=>tam giác ADC cân tại C

b,xét tam giác AHB và tam giác DHE có:

góc BHA= góc DHE( đối đỉnh)

HA=HD(cmt), HB=HE(gT)=>tam giác AHB= tam giác DHE(c.g.c)

gọi giao điểm DE với AC là K

vì tam giác AHB= tam giác DHE(cmt)=>góc HED= góc HBA

mà góc HED=góc CEK( đối đỉnh)=> góc HBA=góc CEK

lại có tam giác ABC vuông tại A=> góc HBA+ góc ECK=90 độ=> góc CEK+góc ECK=90 độ=>DK\(\perp AC\)

hay DE \(\perp AC\) mà CE\(\perp AD\)(tại H)=>E là trực tâm tam giác ADC

ăn cơm đã ý c tí mik làm sau

Nguyễn Tiến Đạt
29 tháng 5 2021 lúc 18:32

help mình

missing you =
30 tháng 5 2021 lúc 14:02

ăn cơm hôm nay mới xong :)) ý c

ta có tam giác ADC cân tại C(cm ở ý a)=>AC=CD

tam giác ABE có AH  là đường cao đồng thời là trung tuyến

=>tam giác ABE cân tại E=>AE=AB

=>AE+CD=AB+AC

xét tam giác ABC vuông tại A=>AB+AC>BC(quan hệ giữa 3 cạnh 1 tam giác)

=>AE+CD>BC

 

Hoi Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 2 2021 lúc 21:34

a) Xét ΔABH vuông tại H và ΔDBH vuông tại H có

BH chung

HA=HD(gt)

Do đó: ΔABH=ΔDBH(hai cạnh góc vuông)

Suy ra: \(\widehat{ABH}=\widehat{DBH}\)(hai góc tương ứng)

mà tia BH nằm giữa hai tia BA,BD

nên BH là tia phân giác của \(\widehat{ABD}\)(đpcm)

b) Xét ΔACH vuông tại H và ΔDCH vuông tại H có

CH chung

AH=DH(gt)

Do đó: ΔACH=ΔDCH(hai cạnh góc vuông)

Suy ra: CA=CD(hai cạnh tương ứng)

Ta có: ΔABH=ΔDBH(cmt)

nên BA=BD(hai cạnh tương ứng)

Xét ΔABC và ΔDBC có 

BA=BD(cmt)

BC chung

CA=CD(cmt)

Do đó: ΔABC=ΔDBC(c-c-c)

Lê Đông Hậu
Xem chi tiết
Trà My
19 tháng 12 2016 lúc 11:25

A B C D H

a) Xét \(\Delta BHA\) và \(\Delta BHD\) có:

BH là cạnh chung\(\widehat{BHA}=\widehat{BHD}\) (\(\widehat{BHA}=90^o\) mà \(\widehat{BHA}\) và \(\widehat{BHD}\) kề bù => \(\widehat{BHD}=90^o=\widehat{BHA}\))AH=HD (giả thiết đề bài)

=>\(\Delta BHA\)=\(\Delta BHD\) (c.g.c) => \(\widehat{HBA}=\widehat{HBD}\) (2 góc tương ứng) => BC là tia phân giác của góc BAD

b) Xét \(\Delta ABC\) và \(\Delta DBC\) có:

AB=BD (vì \(\Delta BHA\)= mà AB và BD là 2 cạnh tương ứng)  (vì = mà  và  là 2 góc tương ứng)BC là cạnh chung

 

​=>\(\Delta ABC\)=\(\Delta DBC\) ( c.g.c)

Vậy bài toán đã được chứng minh.

Lê Đông Hậu
19 tháng 12 2016 lúc 14:20

bạn làm lại câu B dc ko ạ, ko rõ cko lắm ạ

Quang Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 4 2023 lúc 14:47

 

a: Xét ΔCAD có

CH vừa là đường cao, vừa là trung tuyến

=>ΔCAD cân tại C

b: Xet ΔCAB và ΔCDB có

CA=CD

góc ACB=góc DCB

CB chung

=>ΔCAB=ΔCDB

Quang Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 4 2023 lúc 14:38

a: Xét ΔCAD có

CH vừa là đường cao, vừa là trung tuyến

=>ΔCAD cân tại C

b: Xet ΔCAB và ΔCDB có

CA=CD

góc ACB=góc DCB

CB chung

=>ΔCAB=ΔCDB

ha maiduong
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 7 2021 lúc 22:13

a) Xét ΔAHB vuông tại H và ΔDHB vuông tại H có 

BH chung

AH=DH(gt)

Do đó: ΔAHB=ΔDHB(hai cạnh góc vuông)

Chuyen Nguyen
Xem chi tiết
Văn Đình Minh Lộc
14 tháng 12 2022 lúc 15:20

1) Áp dụng t/c tổng 3 góc trog 1 tg ta có:

A^+B^+C^=180o (các góc trog ΔABC)

⇒90o+60o+C^=180o

⇒C^=30o

Khi đó: C^<B^(30<60)

⇒AB<AC (quan hệ góc và cạnh đối diện)

⇒HB<HC (quan hệ đường xiên  hình chiếu)

2) Có vấn đề.

3) Xét ΔACH vuông tại H và ΔDCH vuông tại H có:

CH chung

AH=DH(gt)

⇒ΔACH=ΔDCH(cgv−cgv)

4) Vì ΔACH=ΔDCH(3)

nên ACH^=DCB^=30o

C/m tương tự câu 3): ΔABH=ΔDBH(cgv−cgv)

⇒ABH^=DBC^=60o

Áp dụng tc tổng 3 góc trog 1 tg ta có:

BDC^+DBC^+DCB^=180o

⇒BDC^=180o−60o−30o

Yen Thanh
Xem chi tiết
Lovers
16 tháng 2 2016 lúc 17:50

A B C H D

Xét \(\Delta AHB\) và \(\Delta DHB\):

-AH=DH (giả thiết)

- Góc AHB = góc DHB = 90 o

-Chung cạnh HB

\(\Rightarrow\Delta AHB=\Delta DHB\)(c.g.c)

\(\Rightarrow\)Góc ABH = góc DBH ( 2 góc tương ứng)

Do đó BH hay BC là phân giác của góc ABD

Xét \(\Delta AHC\) và \(\Delta DHC\):

- AH= DH ( giả thiết)

- Góc AHC = góc DHC = 90 o

-Chung cạnh HC

\(\Rightarrow\Delta AHC=\Delta DHC\)(c.g.c)

\(\Rightarrow\) Góc ACH = góc DCH ( 2 góc tương ứng)

Do đó CH hay CB là tia phân giác của góc ACD.

Phạm Huyền Trang
Xem chi tiết
Nguyễn Tuấn Minh
Xem chi tiết