Cho a, b là hai số dương thỏa mãn: \(a^2+b^{^{ }2}=6\)
Chứng minh : \(\sqrt{3.\left(a^2+6\right)}\ge\left(a+b\right)\sqrt{2}\)
Cho \(a;b\)là hai số dương thỏa mãn: \(a^2+b^2=6\).Chứng minh:
\(\sqrt{3\left(a^2+6\right)}\ge\left(a+b\right)\sqrt{2}\)
Bình phương 2 vế ta được
3a2 + 18 - 2a2 - 4ab - 2b2 \(\ge\)0
<=> a2 - 2b2 - 4ab + 3( a2 + b2) \(\ge0\)
<=> 4a2 - 4ab + b2 \(\ge0\)
<=> (2a - b)2 \(\ge0\)(đúng)
Cho a, b là hai số dương thỏa mãn: \(a^2+b^2=6\)
Chứng minh : \(\sqrt{3.\left(a^2+6\right)}\ge\left(a+b\right)\sqrt{2}\)
Lời giải:
Từ ĐKĐB kết hợp BĐT Bunhiacopxky:
\(3(a^2+6)=3(a^2+a^2+b^2)=(1+2)(2a^2+b^2)\geq (\sqrt{2}a+\sqrt{2}b)^2\)
\(\Rightarrow \sqrt{3(a^2+6)}\geq \sqrt{2}(a+b)\) (đpcm)
Dấu "=" xảy ra khi \(\left\{\begin{matrix} a,b>0\\ a^2+b^2=6\\ \frac{1}{\sqrt{2}a}=\frac{\sqrt{2}}{b}\end{matrix}\right.\) hay $a=\sqrt{\frac{6}{5}}; b=2\sqrt{\frac{6}{5}}$
cho các số thực dương thỏa mãn \(\sqrt{a}+\sqrt{b}=1\)
Chứng minh rằng \(3\left(a+b\right)^2-\left(a+b\right)+4ab\ge\frac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\)
\(\left(a+3b\right)\left(b+3a\right)\le\left(\frac{4a+4b}{2}\right)^2=\left(2a+2b\right)^2\)
=>\(\frac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\le\frac{1}{2}\left(2a+2b\right)=a+b\)
Mình làm phần dễ nhất rồi, còn lại của bạn đó ^^
Đặt . Do đó . Cần chứng minh:
Or
Bình phương 2 vế và xét hiệu, ta cần chứng minh:
Đó là điều hiển nhiên vì:
Done.
Cho các số thực dương a, b, c thỏa mãn a + b + c = 3. Chứng minh rằng:
\(18\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(9+5\sqrt{3}\right)\left(a^2+b^2+c^2\right)\)
\(=\)\(18\left(\frac{1}{1}+\frac{1}{1}+\frac{1}{1}\right)\)\(=\)\(18\frac{3}{1}\)\(>\)\(\left(9+5\sqrt{3}\right)\left(a^2+b^2+c^2\right)\)\(=\)\(0\)
Vậy\(18\frac{3}{1}\)\(>\)\(0\)
Chứng minh là \(18\frac{3}{1}\)\(>\)\(0\)là đúng
chúc bạn học tốt
Bất đẳng thức trên
<=> + 1 + + 1 + + 1 ≥ 3
<=> + + ≥ 3 (*)
Ta có: VT(*) ≥
Ta sẽ chứng minh: (a + 1)(b + 1)(c + 1) ≥ (ab + 1)(bc + 1)(ca + 1)
<=> abc + ab + bc + ca + a + b + c + 1
≥ a2b2c2 + abc(a + b + c) + ab + bc + ca + 1
<=> 3 ≥ a2b2c2 + 2abc (**)
Theo Cosi: 3 = a + b + c ≥ 3 => ≤ 1 => abc ≤ 1
Vậy (**) đúng => (*) đúng.
Cho a,b,c là các số dương thỏa mãn điều kiện \(a+b+c+2\sqrt{abc}=2\). Chứng minh rằng:
\(\sqrt{a\left(2-b\right)\left(2-c\right)}+\sqrt{b\left(2-c\right)\left(2-a\right)}+\sqrt{c\left(2-a\right)\left(2-b\right)}=\sqrt{8}+\sqrt{abc}\)
cho \(a^2+b^2=6\) ( a, b dương)
chứng minh : \(\sqrt{3\left(a^2+6\right)}\ge\sqrt{2}\left(a+b\right)\)
\(\sqrt{3\left(a^2+6\right)}\ge\sqrt{2}\left(a+b\right)\)
\(\Leftrightarrow\sqrt{3\left(2a^2+b^2\right)}\ge\sqrt{2}\left(a+b\right)\)
\(\Leftrightarrow6a^2+3b^2\ge2a^2+4ab+2b^2\)
\(\Leftrightarrow4a^2-4ab+b^2\ge0\)
\(\Leftrightarrow\left(2a-b\right)^2\ge0\)(đúng)
=> ĐPCM
cho a,b là 2 số dương thỏa mãn a2+b2=6
cmr \(\sqrt{3\left(a^2+6\right)}\ge\left(a+b\right)\sqrt{2}\)
cho các số thực dương a,b thỏa mãn \(\sqrt{a}+\sqrt{b}=1\)
Chứng minh rằng \(3\left(a+b\right)^2-\left(a+b\right)+4ab\ge\frac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=5 và \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3.\)
Chứng minh rằng:\(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}.\)
Ta có:
\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=\frac{9-5}{2}=2\)
Suy ra \(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)
Tương tự, ta áp dụng với hai biến thực dương còn lại, thu được:
\(\hept{\begin{cases}b+2=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\\c+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\end{cases}}\)
Khi đó, ta nhân vế theo vế đối với ba đẳng thức trên, nhận thấy: \(\left(a+2\right)\left(b+2\right)\left(c+2\right)=\left[\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\right]^2\)
\(\Rightarrow\) \(\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\) (do \(a,b,c>0\) )
nên \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)+\sqrt{b}\left(\sqrt{c}+\sqrt{a}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)}\)
\(=\frac{2\left(\sqrt{ab}+\sqrt{ca}+\sqrt{ca}\right)}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
\(\Rightarrow\) \(đpcm\)