1 . Cho 3 số thực dương a,b,c. CMR::
\(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
2 . cho a, b, c là 3 số đôi một khác nhau thỏa mãn :
\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
CMR : \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
Cho \(a,b,c\) là các số thực không âm. CMR:
\(3\left(a^2+b^2+c^2\right)\ge\) \(\left(a+b+c\right)\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\) \(+\left(a-b\right)^2\) \(+\left(b-c\right)^2+\left(c-a\right)^2\ge\left(a+b+c\right)^2\)
Rút gọn:
a, A = \(\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\) (đk: x ≥ 0 và x ≠ 36)
b, B = \(\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\) (đk: x ≥ 0 và x ≠ 9)
c, C = \(\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}-\frac{2}{\sqrt{ab}}:\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2\) (đk: a > 0, b > 0 và a ≠ b)
d, D = \(\left(\frac{2-a\sqrt{a}}{2-\sqrt{a}}+\sqrt{a}\right)\left(\frac{2-\sqrt{a}}{2-a}\right)\) (đk: a ≥ 0, a ≠ 2, a ≠ 4)
Tính a=\(\dfrac{\sqrt[3]{10+6\sqrt{3}}.\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-5}\)
b, a= \(\sqrt[3]{2-\sqrt{3}}+\sqrt[3]{2+\sqrt{3}}\) CMR \(\dfrac{64}{\left(a^2-3\right)^3}-3a\) ∈ Z
cho a,b,c là các số dương thỏa mãn: a+b+c=5 và \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
chứng minh rằng: \(\dfrac{\sqrt{a}}{a+2}+\dfrac{\sqrt{b}}{b+2}+\dfrac{\sqrt{c}}{c+2}=\dfrac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
Cho các số thực dương a, b thỏa mãn \(2a+3b=2019\)
Chứng minh rằng : \(\sqrt{ab+2a+2b+4}+\sqrt{\left(2a+2\right)b}\le1012\)
Bài 4: Cho a, b, c là độ dài ba cạnh của một tam giác, p là nửa chu vi . CMR:
\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\) \(\ge\) \(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Bài 5: Cho x, y, z dương. CMR:
\(\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{x+z}}+\sqrt{\frac{z}{x+y}}>2\)
Bài 6: Cho x, y, z dương thỏa mãn: xy + yz + zx = 1
CMR: \(\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}\le2\left(x+y+z\right)\)
1.Cho x, y là các số thực không âm . Tìm Max của \(\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)\left(1+y^2\right)}\)
2.cho a,b,c >0 thỏa mãn \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\).CMR \(abc\le\frac{1}{8}\)
3.Giải phương trình : \(x^3-4\sqrt[3]{4x-3}+3=0\)
4.Tìm x,y thỏa mãn \(5x-2\sqrt{x}\left(2+y\right)+y^2+1=0\)
5.Giải phương trình \(\left(2x^3-3x+1\right)\left(2x^2+5x+1\right)=9x^2\)
6.cho các số dương a , b , c thỏa mãn a+b+c = 4. CMR \(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}>2\sqrt{2}\)
7. Tìm Max của S = \(5x^2+9y^2-12xy+24x-48y+2016\)
8. Giải phương trình \(4\sqrt{x+1}=x^2-5x+14\)
Tính:
\(A=2\sqrt{\left(-3\right)^6}+2\sqrt{\left(-2\right)^4}-4\sqrt{\left(-2\right)^6}\)
\(B=\sqrt{\left(\sqrt{2}-2\right)^2}+\sqrt{\left(\sqrt{2}-3\right)^2}\)
\(C=\sqrt{\left(3-\sqrt{3}\right)^2}-\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(D=\sqrt{\left(5+\sqrt{6}\right)^2}-\sqrt{\left(\sqrt{6}-5\right)^2}\)
\(E=\sqrt{17^2-8^2}-\sqrt{3^2+4^2}\)