Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thúy linh

1 . Cho 3 số thực dương a,b,c. CMR::

\(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)

2 . cho a, b, c là 3 số đôi một khác nhau thỏa mãn :

\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

CMR : \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)

Hoàng Thị Ánh Phương
8 tháng 3 2020 lúc 9:43

Bài 1 :

Áp dụng BĐT Cô - si cho 3 số không âm

\(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{a^3}{b^3}}+1\ge3\sqrt[3]{\sqrt{\frac{a^6}{b^6}}}=\frac{3a}{b}\)

\(\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{b^3}{c^3}}+1\ge3\sqrt[3]{\sqrt{\frac{b^6}{c^6}}}=\frac{3b}{c}\)

\(\sqrt{\frac{c^3}{a^3}}+\sqrt{\frac{c^3}{a^3}}+1\ge3\sqrt[3]{\sqrt{\frac{c^6}{a^6}}}=\frac{3c}{a}\)

Cộng theo vế , ta được :

\(2\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)+3\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)+\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)

\(\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)+3\)

\(\Rightarrow2\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)

\(\Rightarrow\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)\ge\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)

Vậy \(\Rightarrow\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)\ge\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\left(đpcm\right)\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Kiều Anh
Xem chi tiết
Hoàng Linh Chi
Xem chi tiết
Chiều Nguyễn
Xem chi tiết
Trịnh Bá Vương Toàn
Xem chi tiết
Ánh Dương
Xem chi tiết
Mai Linh
Xem chi tiết
Alice dono
Xem chi tiết
Nguyễn Hoàng Diệu
Xem chi tiết
NGUYỄN MINH HUY
Xem chi tiết