\(\frac{x-1}{2x+3}-\frac{3x+7}{2x-3}=\frac{-4x^2+10}{4x^2-9}\)
Bài 1 tính
\(\frac{X^2-36}{2X+10}.\frac{3}{6-X}\)
\(\frac{X^2-4}{X^2-9}.\frac{3X+9}{X+2}\)
\(\frac{X^3-8}{5X+20}.\frac{X^2+4X}{X^2+2X+4}\)
\(\frac{4X+12}{\left(X+4\right)^2}:\frac{3X+9}{X+4}\)
\(\frac{5X-10}{X^2+7}:2X+4\)
\(X^2-25:\frac{2X+10}{3X-7}\)
\(\frac{x^2-36}{2x+10}\cdot\frac{3}{6-x}=\frac{\left(x-6\right)\left(x+6\right)}{2x+10}\cdot\frac{3}{6-x}=-\frac{3\left(x+6\right)}{2x+10}=-\frac{3x+18}{2x+10}\)
\(\frac{x^2-4}{x^2-9}\cdot\frac{3x+9}{x+2}=\frac{\left(x-2\right)\left(x+2\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{3\left(x+3\right)}{x+2}=\frac{3\left(x-2\right)}{x-3}\)
\(\frac{x^3-8}{5x+20}\cdot\frac{x^2+4x}{x^2+2x+4}=\frac{\left(x-2\right)\left(x^2+2x+4\right)}{5\left(x+4\right)}\cdot\frac{x\left(x+4\right)}{x^2+2x+4}=\frac{x\left(x-2\right)}{5}\)
\(\frac{4x+12}{\left(x+4\right)^2}:\frac{3x+9}{x+4}=\frac{4\left(x+3\right)}{\left(x+4\right)^2}\cdot\frac{x+4}{3\left(x+3\right)}=\frac{4}{3\left(x+4\right)}\)
Giải các phương trình sau:
a. \(\frac{4}{2x+3}-\frac{7}{3x-5}=0\)
b. \(\frac{4}{2x-3}+\frac{4x}{4x^2-9}=\frac{1}{2x+3}\)
c. \(\frac{2}{2x+1}+\frac{x}{4x^2-1}=\frac{7}{2x-1}\)
d. \(\frac{x^2+5}{25-x^2}=\frac{3}{x+5}+\frac{x}{x-5}\)
\(\frac{4}{2x+3}-\frac{7}{3x-5}=0\left(đkxđ:x\ne-\frac{3}{2};\frac{5}{3}\right)\)
\(< =>\frac{4\left(3x-5\right)}{\left(2x+3\right)\left(3x-5\right)}-\frac{7\left(2x+3\right)}{\left(2x+3\right)\left(3x-5\right)}=0\)
\(< =>12x-20-14x-21=0\)
\(< =>2x+41=0< =>x=-\frac{41}{2}\left(tm\right)\)
\(\frac{4}{2x-3}+\frac{4x}{4x^2-9}=\frac{1}{2x+3}\left(đk:x\ne-\frac{3}{2};\frac{3}{2}\right)\)
\(< =>\frac{4\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{4x}{\left(2x-3\right)\left(2x+3\right)}-\frac{2x-3}{\left(2x+3\right)\left(2x-3\right)}=0\)
\(< =>8x+12+4x-2x+3=0\)
\(< =>10x=15< =>x=\frac{15}{10}=\frac{3}{2}\left(ktm\right)\)
\(\frac{2}{2x+1}+\frac{x}{4x^2-1}=\frac{7}{2x-1}\left(đkxđ:x\ne-\frac{1}{2};\frac{1}{2}\right)\)
\(< =>\frac{2\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}+\frac{x}{\left(2x+1\right)\left(2x-1\right)}=\frac{7\left(2x+1\right)}{\left(2x+1\right)\left(2x-1\right)}\)
\(< =>4x-2+x=14x+7\)
\(< =>14x-5x=-2-7\)
\(< =>9x=-9< =>x=-\frac{9}{9}=-1\left(tm\right)\)
Bài 1. Giải các phương trình sau
1) \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}-2x\)
2) \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
3) \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\)
4) \(\frac{2x+3}{3}=\frac{5-4x}{2}\)
5) \(\frac{5x+3}{12}=\frac{1+2x}{9}\)
6) \(x-\frac{x+1}{3}=\frac{2x+1}{5}\)
7) \(\frac{3\left(x-3\right)}{4}+\frac{4x-10,5}{10}=\frac{3\left(x+1\right)}{5}+6\)
8) \(\frac{2\left(3x+1\right)+1}{4}-5=\frac{2 \left(3x-1\right)}{5}-\frac{3x+2}{10}\)
9) \(\frac{x+1}{3}+\frac{3\left(2x+1\right)}{4}=\frac{2x+3\left(x+1\right)}{6}+\frac{7+12x}{12}\)
10) \(\frac{2x-1}{3}-\frac{5x+2}{7}=x+13\)
Bài 4: Giải các phương trình sau
a) 4(x+5)(x+6)(x+10)(x+12)=\(3x^2\)
b) \(\frac{1}{x^2-3x+3}+\frac{2}{x^2-3x+4}=\frac{6}{x^2-3x+5}\)
c) \(\frac{4x}{4x^2-8x+7}+\frac{3x}{4x^2-10x+7}=1\)
d) \(\frac{2x}{2x^2-5x+3}+\frac{13x}{2x^2+x+3}\)
a) 4 ( x + 5 )( x + 6 )( x + 10 )( x + 12 ) = 3x2
Do x = 0 không là nghiệm pt nên chia 2 vế pt cho \(x^2\ne0\), ta được :
\(\frac{4}{x^2}\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3\)
\(\Leftrightarrow4\left(x+\frac{60}{x}+17\right)\left(x+\frac{60}{x}+16\right)=3\)
Đến đây ta đặt \(x+\frac{60}{x}+16=t\left(1\right)\)
Ta được :
\(4t\left(t+1\right)=3\Leftrightarrow4t^2+4t-3=0\Leftrightarrow\left(2t+3\right)\left(2t-1\right)=0\)
Từ đó ta lắp vào ( 1 ) tính được x
Giải các phương trình ẩn x sau:
1) \(\frac{x}{x-3}-\frac{2x^2+9}{2x^2-3x-9}\)\(=\frac{1}{2x+3}\)
2) \(\frac{x}{2x-3}+\frac{1}{x-3}=\frac{x^2-x-3}{2x^2-9x+9}\)
3) \(\frac{3}{x+2}-\frac{2x-20}{3x^2+4x-4}=\frac{7}{3x-2}\)
Ta thấy \(\left(x-3\right)\left(2x+3\right)=2x^2-3x-9.\)
\(\left(1\right)\Leftrightarrow\frac{x}{x-3}-\frac{2x^2+9}{\left(x-3\right)\left(2x+3\right)}=\frac{1}{2x+3}\)
ĐK: \(x\ne3\)và \(x\ne-\frac{3}{2}\)
\(\Rightarrow x\left(2x+3\right)-2x^2-9=x-3\)
\(\Leftrightarrow2x^2+3x-2x^2-9=x-3\Leftrightarrow2x=6\Leftrightarrow x=2\)
Thỏa mãn ĐK
Các trường hợp khác làm tương tự
giải các phương trình và hệ phương trình sau
1 , 4 ( x + 5 ) ( x + 6 ) ( x + 10 ) ( x + 12 ) = 3x2
2 , ( 2x - 1 ) ( 4x + 5 ) ( 8x + 3 ) ( 16x - 15 ) = 99x2
3 ,( x - 1 ) ( x - 2 ) ( x - 4 ) ( x - 8 ) =\(\frac{10}{9}\) x2
4, \(\frac{3x}{x^2-x+4}\) + \(\frac{x}{2x^2-6x+8}\) = 1
5 , \(\frac{3x}{x^2-4x+1}\) - \(\frac{2x}{x^2+x+1}\) = \(\frac{8}{3}\)
6, \(\frac{3x}{x^2-3x+1}\) + \(\frac{7x}{x^2+x+1}\) = -4
7, \(\frac{4x}{4x^2-8x+7}\) + \(\frac{3x}{4x^2-10x+7}\)= 1
8, \(\frac{2x}{x^2-3x+1}\) + \(\frac{7x}{x^2+x+1}\) = 6
9, \(\frac{x^2-10x+15}{x^2-6x+15}\) - \(\frac{4x}{x^2-12x+15}\)= 2
a) \(\frac{5-2x}{3}+\frac{\left(x-1\right)\left(x+1\right)}{3x+2}=\frac{\left(x+2\right)\left(1-3x\right)}{9x+6}\)
b)\(1-\frac{x-8}{4x^2-9}=\frac{2}{2x+3}\)
c)\(\frac{-x}{x-10}-\frac{8}{x-6}=\frac{4x}{x^2-16x+60}-1\)
d)\(\frac{7}{x^2-1}+\frac{8}{x^2-2x+1}=\frac{37-9x}{x^3-x^2-x+1}\)
Mình đang cần gấp tks all !
Bài 4: Giải các phương trình sau
a) 4(x+5)(x+6)(x+10)(x+12)=\(3x^2\)
b) \(\frac{1}{x^2-3x+3}+\frac{2}{x^2-3x+4}=\frac{6}{x^2-3x+5}\)
c) \(\frac{4x}{4x^2-8x+7}+\frac{3x}{4x^2-10x+7}=1\)
d) \(\dfrac{2x}{2x^2-5x+3}+\dfrac{13x}{2x^2+x+3}=6\)
a: \(\Leftrightarrow4\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3x^2\)
\(\Leftrightarrow4\cdot\left[\left(x^2+60\right)^2+33x\left(x^2+60\right)+272x^2\right]=3x^2\)
=>4(x^2+60)^2+132x(x^2+60)+1085x^2=0
=>4(x^2+60)^2+62x(x^2+60)+70x(x^2+60)+1085x^2=0
=>2(x^2+60)(2x^2+120+31x)+35x(2x^2+120+31x)=0
=>(2x^2+120+35x)(2x^2+31x+120)=0
=>\(x\in\left\{\dfrac{-35\pm\sqrt{265}}{4};-\dfrac{15}{2};-8\right\}\)
b: Đặt x^2-3x=a
Phương trình sẽ là \(\dfrac{1}{a+3}+\dfrac{2}{a+4}=\dfrac{6}{a+5}\)
\(\Leftrightarrow\dfrac{a+4+2a+6}{\left(a+3\right)\left(a+4\right)}=\dfrac{6}{a+5}\)
=>(3a+10)(a+5)=6(a^2+7a+12)
=>6a^2+42a+72=3a^2+15a+10a+50
=>3a^2+17a+22=0
=>x=-2 hoặc x=-11/3