Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Higashi Mika
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
29 tháng 6 2017 lúc 9:27

Phép chia các phân thức đại số

nguyễn thái hồng duyên
Xem chi tiết
Thành Trương
1 tháng 7 2018 lúc 9:42

Phân thức đại số

Thành Trương
1 tháng 7 2018 lúc 9:48

Phân thức đại số

Lê Cẩm
Xem chi tiết
Lê Bùi
23 tháng 8 2017 lúc 18:48

P=\(X^2+2Y^2-2XY+8X+8Y+2017\)

P=\(\dfrac{4X^2+8Y^2-8XY+32Y+32X+8068}{4}\)

P=\(\dfrac{(\sqrt{3}X)^2-2.\sqrt{3}X.\dfrac{4}{\sqrt{3}}Y+\left(\dfrac{4}{\sqrt{3}}Y\right)^2-\left(\dfrac{4}{\sqrt{3}}Y\right)^2+8Y^2+X^2+32X+32Y+8068}{4}\)

P=\(\dfrac{\left(\sqrt{3}X-\dfrac{4}{\sqrt{3}}Y\right)^2+X^2+\dfrac{8}{3}Y^2+32X+32Y+8068}{4}\)

P=\(\dfrac{\left(\sqrt{3}X-\dfrac{4}{\sqrt{3}}Y\right)^2+X^2+2.X.16+16^2+(\dfrac{2\sqrt{2}}{\sqrt{3}}Y)^2+2.\dfrac{2\sqrt{2}}{\sqrt{3}}Y.4\sqrt{6}+\left(4\sqrt{6}\right)^2+7716}{4}\)

P=\(\dfrac{\left(\sqrt{3}X-\dfrac{4}{\sqrt{3}}Y\right)^2+\left(X+16\right)^2+\left(\dfrac{2\sqrt{2}}{\sqrt{3}}Y+4\sqrt{6}\right)^2}{4}+1929\ge1929\forall X\in R\)

DẤU = XẢY RA \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{3}X-\dfrac{4}{\sqrt{3}}Y=0\\X+16=0\\\dfrac{2\sqrt{2}}{\sqrt{3}}Y+4\sqrt{6}=0\end{matrix}\right.\)

Phan Phúc Nguyên
Xem chi tiết
Đinh Thùy Linh
6 tháng 7 2016 lúc 9:27

\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}:\frac{\left(2y-x\right)\left(2y+x\right)}{\left(x-2y\right)^2}:\frac{5xy\left(x-2y\right)}{\left(x+2y\right)^3}\)

Điều kiện: \(x\ne2y;x\ne-2y;x\ne0;y\ne0\)

\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}:\frac{\left(2y+x\right)}{\left(x-2y\right)}:\frac{5xy\left(x-2y\right)}{\left(x+2y\right)^3}\)

\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}\times\frac{x-2y}{x+2y}\times\frac{\left(x+2y\right)^3}{5xy\left(x-2y\right)}=\frac{2\left(x-2y\right)}{5y}\)

Duong Thi Nhuong
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 1 2022 lúc 0:04

\(=\dfrac{2x\left(x-2y\right)}{\left(x+2y\right)^2}\cdot\dfrac{\left(x-2y\right)^2}{-\left(x-2y\right)\left(x+2y\right)}:\dfrac{5x^2y-10xy^2}{x^3+6x^2y+12xy^3+8y^3}\)

\(=\dfrac{-2x\left(x-2y\right)^2}{\left(x+2y\right)^3}\cdot\dfrac{\left(x+2y\right)^3}{5xy\left(x-2y\right)}\)

\(=\dfrac{-2x\cdot\left(x-2y\right)}{5xy}=\dfrac{-2\left(x-2y\right)}{5y}\)

Phạm Ánh Dương
Xem chi tiết
Phú Hoàng Minh
Xem chi tiết
Đào Trung Hiếu
Xem chi tiết
Đào Trung Hiếu
17 tháng 10 2021 lúc 18:07

làm ơn giúp e vs

Nguyễn Hoàng Minh
17 tháng 10 2021 lúc 18:11

\(1,=\left(x-2\right)\left(5-y\right)\\ 2,=2\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(2x-2y-z\right)\\ 3,=5xy\left(x-2y\right)\\ 4,=3\left(x^2-2xy+y^2-4z^2\right)=3\left[\left(x-y\right)^2-4z^2\right]\\ =3\left(x-y-2z\right)\left(x-y+2z\right)\\ 5,=\left(x+2y\right)^2-16=\left(x+2y-4\right)\left(x+2y+4\right)\\ 6,=-\left(6x^2-3x-4x+2\right)=-\left(2x-1\right)\left(3x-2\right)\\ 7,=\left(2x+y\right)\left(2x+y+x\right)=\left(2x+y\right)\left(3x+y\right)\\ 8,=\left(x-y\right)\left(x+5\right)\\ 9,=\left(x+1\right)^2-y^2=\left(x-y+1\right)\left(x+y+1\right)\\ 10,=\left(x^2-9\right)x=x\left(x-3\right)\left(x+3\right)\\ 11,=\left(x-2\right)\left(y+1\right)\\ 12,=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\\ 13,=3\left(x+y\right)-\left(x+y\right)^2=\left(x+y\right)\left(3-x-y\right)\)