Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Lê Thuỳ Linh (Bạn...
Xem chi tiết
Trần Ái Linh
1 tháng 2 2021 lúc 22:50

• PT có nghiệm duy nhất \( \Leftrightarrow \dfrac{1}{m} \ne \dfrac{-2}{1} \Leftrightarrow m \ne \dfrac{-1}{2}\)

• PT vô nghiệm \(\Leftrightarrow \dfrac{1}{m} =\dfrac{-2}{1}  \ne \dfrac{1}{2} \Leftrightarrow m=\dfrac{-1}{2}\)

• PT có vô số nghiệm \(\Leftrightarrow \dfrac{1}{m} = \dfrac{-2}{1} = \dfrac{1}{2} (\text{Vô lý})\)

Vậy....

Lizy
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 1 2024 lúc 21:18

Để hệ có nghiệm duy nhất thì \(\dfrac{2}{m+3}\ne\dfrac{3}{-2}\)

=>\(m+3\ne-\dfrac{4}{3}\)

=>\(m\ne-\dfrac{13}{3}\)

Để hệ có vô số nghiệm thì \(\dfrac{2}{m+3}=\dfrac{3}{-2}=\dfrac{1}{-2}\)

mà \(\dfrac{3}{-2}\ne\dfrac{1}{-2}\)

nên \(m\in\varnothing\)

Để hệ vô nghiệm thì \(\dfrac{2}{m+3}=\dfrac{3}{-2}\ne\dfrac{1}{-2}\)

=>\(\dfrac{2}{m+3}=\dfrac{3}{-2}\)

=>\(m+3=-\dfrac{4}{3}\)

=>\(m=-\dfrac{13}{3}\)

Kha Nguyễn
Xem chi tiết
Nguyễn Linh
Xem chi tiết
JakiNatsumi
Xem chi tiết
Nguyễn Hoàng Duy
Xem chi tiết
tthnew
18 tháng 1 2021 lúc 13:17

Mình mạn phép sửa lại phương trình $2$ của bạn là $mx+3y=1$ nhé.

ĐK: $m\neq 0$

a) Khi $m=2,$ hệ phương trình là:

\(\left\{{}\begin{matrix}-4x+y=5\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x+y=5\\4x+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-1\)

b) \(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2mx+y=5\\2mx+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-\dfrac{2}{m}\)

c) Do ta luôn có $y=1$ là số dương nên chỉ cần chọn $m$ sao cho:

\(x=-\dfrac{2}{m}>0\Leftrightarrow m< 0\)

d) \(x^2+y^2=1\Leftrightarrow\left(-\dfrac{2}{m}\right)^2+1^2=1\Leftrightarrow\dfrac{4}{m^2}=0\) (vô lý)

Vậy không tồn tại $m$ sao cho $x^2+y^2=1.$

Trần Mun
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 1 2024 lúc 20:29

Để hệ có nghiệm duy nhất thì \(\dfrac{m}{2m}\ne\dfrac{1}{3}\)

=>\(\dfrac{1}{2}\ne\dfrac{1}{3}\)(luôn đúng)

\(\left\{{}\begin{matrix}mx+y=5\\2mx+3y=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2mx+2y=10\\2mx+3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-y=4\\mx+y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-4\\mx=5-y=5-\left(-4\right)=9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-4\\x=\dfrac{9}{m}\end{matrix}\right.\)

\(\left(2m-1\right)\cdot x+\left(m+1\right)\cdot y=m\)

=>\(\dfrac{9}{m}\left(2m-1\right)+\left(m+1\right)\cdot\left(-4\right)=m\)

=>\(\dfrac{9\left(2m-1\right)}{m}=m+4m+4=5m+4\)

=>m(5m+4)=18m-9

=>\(5m^2-14m+9=0\)

=>(m-1)(5m-9)=0

=>\(\left[{}\begin{matrix}m=1\\m=\dfrac{9}{5}\end{matrix}\right.\)

Lizy
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 1 2024 lúc 0:14

a: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{1}\ne\dfrac{1}{m}\)

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

Để hệ có vô số nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}=\dfrac{3m-1}{m+1}\)

=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{1}{m}\\\dfrac{1}{m}=\dfrac{3m-1}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2=1\\3m^2-m=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\3m^2-2m-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\\left(m-1\right)\left(3m+1\right)=0\end{matrix}\right.\)

=>m=1

Để hệ vô nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}\ne\dfrac{3m-1}{m+1}\)

=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{1}{m}\\\dfrac{m}{1}\ne\dfrac{3m-1}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2=1\\m^2+m\ne3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\m^2-2m+1\ne0\end{matrix}\right.\)

=>m=-1

b: Để hệ có vô số nghiệm thì \(\dfrac{m}{1}=\dfrac{4}{m}=\dfrac{10-m}{4}\)

=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{4}{m}\\\dfrac{4}{m}=\dfrac{10-m}{4}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2=4\\10m-m^2=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m^2-10m+16=0\end{matrix}\right.\)

=>m=2

Để hệ vô nghiệm thì \(\dfrac{m}{1}=\dfrac{4}{m}\ne\dfrac{10-m}{4}\)

=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{4}{m}\\\dfrac{m}{1}\ne\dfrac{10-m}{4}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2=4\\4m\ne10-m\end{matrix}\right.\Leftrightarrow m=-2\)

Để hệ có nghiệm duy nhất thì \(\dfrac{m}{1}\ne\dfrac{4}{m}\)

=>\(m^2\ne4\)

=>\(m\notin\left\{2;-2\right\}\)

Lizy
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 1 2024 lúc 7:18

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m}{1}\ne\dfrac{1}{m}\)

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

Để hệ phương trình có vô số nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}=\dfrac{3m-1}{m+1}\)

=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{1}{m}\\\dfrac{1}{m}=\dfrac{3m-1}{m+1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2=1\\m\left(3m-1\right)=m+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\3m^2-m-m-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\3m^2-2m-1=0\end{matrix}\right.\Leftrightarrow m=1\)

Để hệ phương trình vô nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}\ne\dfrac{3m-1}{m+1}\)

=>\(\left\{{}\begin{matrix}m^2=1\\m\left(3m-1\right)\ne m+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\3m^2-2m-1\ne0\end{matrix}\right.\)

=>\(m=-1\)