Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m}{1}\ne\dfrac{1}{m}\)
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
Để hệ phương trình có vô số nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}=\dfrac{3m-1}{m+1}\)
=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{1}{m}\\\dfrac{1}{m}=\dfrac{3m-1}{m+1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2=1\\m\left(3m-1\right)=m+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\3m^2-m-m-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\3m^2-2m-1=0\end{matrix}\right.\Leftrightarrow m=1\)
Để hệ phương trình vô nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}\ne\dfrac{3m-1}{m+1}\)
=>\(\left\{{}\begin{matrix}m^2=1\\m\left(3m-1\right)\ne m+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\3m^2-2m-1\ne0\end{matrix}\right.\)
=>\(m=-1\)