tìm các nghiệm của phương trình
a,5x+3y=2 b,17x-23y=109
Tìm nghiệm nguyên của PT: 17x-23y=109
Bài 4: Tìm tất cả nghiệm nguyên của phương trình
a) \(5x-11y=4\)
b) \(7x+5y=143\)
c) \(23x+53y=109\)
a) \(\left(5,11\right)=1\) nên phương trình có vô số nghiệm.
Phương trình có một nghiệm là \(\left(3;1\right)\) nên nghiệm tổng quát của phương trình trên là
\(\left\{{}\begin{matrix}x=3+11t\\y=1+5t\end{matrix}\right.\), \(t \in \mathbb{Z}\).
b) \(\left(7,5\right)=1\) nên phương trình có vô số nghiệm.
Phương trình có một nghiệm là \(\left(4;23\right)\) nên nghiệm tổng quát của phương trình trên là
\(\left\{{}\begin{matrix}x=4+5t\\y=23-7t\end{matrix}\right.\), \(t \in \mathbb{Z}\).
c) Bạn đọc tự giải.
Viết công thức nghiệm tổng quát của phương trình
a. 3x + 2y = 5
b. 5x - 3y = 6
c. 4x - 3y = 5
d. 3x + 2y = 7
a) \(y=\dfrac{5-3x}{2}\)
b) \(y=\dfrac{5x-6}{3}\)
c) \(y=\dfrac{4x-5}{3}\)
d) \(y=\dfrac{7-3x}{2}\)
a. 3x + 2y = 5
<=> 2(1,5x + y) = 5
<=> 1,5x + y = 2,5
<=> \(\left[{}\begin{matrix}x=\dfrac{2,5-y}{1,5}\\y=2,5-1,5x\end{matrix}\right.\)
Giải các hệ phương trình sau bằng phương pháp cộng đại số:
a ) − 5 x + 2 y = 4 6 x − 3 y = − 7 b ) 2 x − 3 y = 11 − 4 x + 6 y = 5 c ) 3 x − 2 y = 10 x − 2 3 y = 3 1 3
(Các phần giải thích học sinh không phải trình bày).
(Nhân 2 vế pt 1 với 3; nhân pt 2 với 2 để hệ số của y đối nhau)
(hệ số của y đối nhau nên ta cộng từ vế 2 pt)
Vậy hệ phương trình có nghiệm duy nhất
(Nhân hai vế pt 1 với 2 để hệ số của y đối nhau)
( lấy vế cộng vế hai phương trình)
Phương trình 0x = 27 vô nghiệm nên hệ phương trình vô nghiệm.
(Nhân hai vế pt 2 với 3 để hệ số của y bằng nhau)
(Trừ từng vế hai phương trình)
Phương trình 0x = 0 nghiệm đúng với mọi x.
Vậy hệ phương trình có vô số nghiệm dạng (x ∈ R).
Kiến thức áp dụng
Giải hệ phương trình bằng phương pháp cộng đại số
1) Nhân hai vế của phương trình với mỗi hệ số thích hợp (nếu cần) sao cho hệ số của một trong hai ẩn bằng nhau hoặc đối nhau.
2) Áp dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).
3) Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho và kết luận.
Trong các giá trị y = 0 và y = 1, đâu là nghiệm của phương trình 2 y 2 − 3 y + 5 = 5 2 y − 1 − 2 3 y + 1 ?
y = 0 không là nghiệm và y = 1 là nghiệm của PT đã cho.
bài 5 tìm bậc của các đa thức sau
a,A=3x^2y^4+5x^3+xy-3x^2y^4
b,B=7x^3y.(-4x^2y^2)+17x^2y^3-4x^2y+28x^2y^4
c,C=5x^4y^2-7x^3y^2.(-2xy^2)-5x^4y^2+x^3-14x^4y^4
a,A=3x^2y^4+5x^3+xy-3x^2y^4
A=5x3 +xy
=> bậc của A là 3
b,B=7x^3y.(-4x^2y^2)+17x^2y^3-4x^2y+28x^2y^4
=> bậc của B là 8
c,C=5x^4y^2-7x^3y^2.(-2xy^2)-5x^4y^2+x^3-14x^4y^4
C = 5x4y2 -7x3y2 (-2xy2) - 5x4y2 +x3 -14x4y4
C = 5x4y2 + 14x4y4 -5x4y2 +x3 -14x4y4
C = x3
=> Bậc của C là 3
1) Giải hệ phương trình : \(\left\{{}\begin{matrix}2x+y=10\\5x-3y=3\end{matrix}\right.\)
2) Giải phương trình
a) 3x2 - 2x - 1 = 0
b) x4 - 20x2 + 4 = 0
1) \(\left\{{}\begin{matrix}2x+y=10\\5x-3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10x+5y=50\\10x-6y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}11y=44\\2x+y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=3\end{matrix}\right.\)
Vậy hpt có nghiệm (x;y) = (3;4)
2)
a) 3x2 - 2x - 1 = 0
\(\Leftrightarrow3x^2-3x+x-1=0\)
\(\Leftrightarrow3x\left(x-1\right)+\left(x-1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=1\end{matrix}\right.\)
Vậy pt có nghiệm x = 1 hoặc x = 3
b) Đặt x2 = t (t \(\ge\) 0)
Pt trở thành: t2 - 20t + 4 = 0
\(\Delta\) = (-20)2 - 4.1.4 = 400 - 16 = 384
=> pt có 2 nghiệm phân biệt t1 = \(\dfrac{20+8\sqrt{6}}{2}=10+4\sqrt{6}\)
t2 = \(\dfrac{20-8\sqrt{6}}{2}=10-4\sqrt{6}\)
=> x1 = \(\sqrt{10+4\sqrt{6}}=\sqrt{\left(2+\sqrt{6}\right)^2}=2+\sqrt{6}\)
x2 = \(2-\sqrt{6}\)
Tìm bất phương trình bậc nhất hai ẩn trong các bất phương trình sau và chỉ ra một nghiệm của bất phương trình bậc nhất hai ẩn đó:
a) \(5x + 3y < 20\)
b) \(3x - \frac{5}{y} > 2\)
a) \(5x + 3y < 20\)
Đây là bất phương trình bậc nhất hai ẩn.
Chọn \(x = 0;y = 0\)
Khi đó bất phương trình tương đương với 5.0+3.0
Vậy (0;0) là một nghiệm của bất phương trình trên.
b) \(3x - \frac{5}{y} > 2\)
Đây không là bất phương trình bậc nhất hai ẩn vì có ẩn y ở mẫu.
câu 3: giải hệ phương trình
a) \(\left\{{}\begin{matrix}5a+b=5\\b-10a=-19\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{5x}{6}-y=\dfrac{-5}{6}\\\dfrac{2x}{2x+y}+3y=\dfrac{-2}{3}\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x\sqrt{3}+3y=1\\2x-y\sqrt{3}=\sqrt{3}\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{6}{y}\\\dfrac{5}{x}+\dfrac{6}{y}=13\end{matrix}\right.=17\)
giúp mk vs ạ mk cần gấp
a) \(\left\{{}\begin{matrix}5a+b=5\\b-10a=-19\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5a+b=5\\15a=24\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{8}{5}\\b=-3\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{6}{y}=17\\\dfrac{5}{x}+\dfrac{6}{y}=13\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{6}{y}=17\\\dfrac{6}{x}=30\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-\dfrac{1}{2}\end{matrix}\right.\)