Tìm Q
x-2/2x^2+3=2x^2-4x/Q
cho p(x)= 2x^3+3x^2 - 11x +10 , q(x)= 2x^3 - 4x^2 - 2x +4 tìm x sao cho p(x)-q(x)= 2x^2 - 3x +6
Cho 2 đa thức p(x)=4x^3+2x-3+2x-2x^2-1 và q(x)=6x^3-3x+5-2x+3x^2.
a. Tìm bậc của p(x) và q(x)
b. Tìm đa thức m(x) sao cho m(x)=p(x)+q(x)
a, \(P\left(x\right)=4x^3+2x-3+2x-2x^2-1\\ =4x^3-2x^2+\left(2x+2x\right)+\left(-3-1\right)\\ =4x^3-2x^2+4x-4\)
Bậc của P(x) là 3
\(Q\left(x\right)=6x^3-3x+5-2x+3x^2\\ =6x^3+3x^2+\left(-3x-2x\right)+5\\ =6x^3+3x^2-5x+5\)
Bậc của Q(x) là 3
b, \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=4x^3-2x^2+4x-4+6x^3+3x^2-5x+5\\ =\left(4x^3+6x^3\right)+\left(-2x^2+3x^2\right)+\left(4x-5x\right)+\left(-4+5\right)\\ =10x^3+x^2-x+1\)
Cho P(x) = 2x^3 +3x^2 -11x +10
Q(x)= 2x^3 - 4x^2 - 2x + 4
Tìm x sao cho P(x)-Q(x)= 2x^2 - 3x + 6
\(P\left(x\right)-Q\left(x\right)=7x^2-9x+6\)
Để TMĐK đề bài thì: \(7x^2-9x+6=2x^2-3x+6\)
\(\Leftrightarrow5x^2-6x=0\Leftrightarrow x\left(5x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{5}\end{cases}}\)
Q=(2x-x^2/2x^2+8-2x^2/x^3-2x^2+4x-8)(2/x^2+1-x/x).
a) Rút gọn Q
b Tìm các giá trị nguyên của x để Q có giá trị nguyên.
Cho A = \(\left(\frac{2x-3}{4x^2-12x+5}+\frac{3x-8}{13x-2x^2-20}-\frac{3}{2x-1}\right):\frac{21+2x-2x^2}{4x^2+4x-3}+1\)
a, Rút gọn .
b, Tìm \(x\in Z\)để \(A\in Z\).
c, Tìm x để \(A\ge0\)
a. ĐKXĐ : \(x\ne\frac{1}{2};\frac{5}{2};4;-\frac{3}{2};\frac{1\pm\sqrt{43}}{2}\)
\(A=\left(\frac{2x-3}{4x^2-12x+5}+\frac{3x-8}{13x-2x^2-20}-\frac{3}{2x-1}\right):\frac{21+2x-2x^2}{4x^2+4x-3}+\)
\(=\left(\frac{2x-3}{\left(2x-1\right)\left(2x-5\right)}-\frac{3x-8}{\left(2x-5\right)\left(x-4\right)}-\frac{3}{2x-1}\right).\frac{\left(2x-1\right)\left(2x+3\right)}{21+2x-2x^2}+1\)
\(=\frac{\left(2x-3\right)\left(x-4\right)-\left(3x-8\right)\left(2x-1\right)-3\left(2x-5\right)\left(x-4\right)}{\left(2x-1\right)\left(2x-5\right)\left(x-4\right)}.\frac{\left(2x-1\right)\left(2x+3\right)}{21+2x-2x^2}+1\)
\(=\frac{-10x^2+47x-56}{\left(2x-5\right)\left(x-4\right)}.\frac{2x+3}{-2x^2+2x+21}+1\) số to wa
cho hai đa thức: P(x) = \(4x^3+2x^2-2x+7-x^2-x\) và Q(x) =\(-4x^3+x-1^4-2x-x^2-1\).
Tìm x để P(x) = Q(x)
cho hai đa thức c(x) = 5-8x^4+2x^3+x+5x^4+x^2-4x^3 vad d(x)=(3x^5+x^4-4x)-(4x^3-7+2x^4+3x^5.tính p(x)=c(x)+d(x),q(x)=c(x)-d(x).tìm nghiệm của f(x)=q(x)-(-2x^4+2x^3+x^2-12)
`C(x)=`\(5-8x^4+2x^3+x+5x^4+x^2-4x^3\)
`C(x)= (-8x^4+5x^4)+(2x^3-4x^3)+x^2+x+5`
`C(x)= -3x^4-2x^3+x^2+x+5`
`D(x)=`\(\left(3x^5+x^4-4x\right)-\left(4x^3-7+2x^4+3x^5\right)\)
`D(x)= 3x^5+x^4-4x-4x^3+7-2x^4-3x^5`
`D(x)=(3x^5-3x^5)+(x^4-2x^4)-4x^3-4x+7`
`D(x)=-x^4-4x^3-4x+7`
`P(x)=C(x)+D(x)`
`P(x)=( -3x^4-2x^3+x^2+x+5)+(-x^4-4x^3-4x+7)`
`P(x)=-3x^4-2x^3+x^2+x+5-x^4-4x^3-4x+7`
`P(x)=(-3x^4-x^4)+(-2x^3-4x^3)+x^2+(x-4x)+(5+7)`
`P(x)=-4x^4-6x^3+x^2-3x+12`
`Q(x)=C(x)-D(x)`
`Q(x)=( -3x^4-2x^3+x^2+x+5)-(-x^4-4x^3-4x+7)`
`Q(x)=-3x^4-2x^3+x^2+x+5+x^4+4x^3+4x-7`
`Q(x)=(-3x^4+x^4)+(-2x^3+4x^3)+x^2+(x+4x)+(5-7)`
`Q(x)=-2x^4+2x^3+x^2+5x-2`
`F(x)=Q(x)-(-2x^4+2x^3+x^2-12)`
`F(x)=(-2x^4+2x^3+x^2+5x-2)-(-2x^4+2x^3+x^2-12)`
`F(x)=-2x^4+2x^3+x^2+5x-2+2x^4-2x^3-x^2+12`
`F(x)=(-2x^4+2x^4)+(2x^3-2x^3)+(x^2-x^2)+5x+(-2+12)`
`F(x)=5x+10`
Đặt `5x+10=0`
`\Leftrightarrow 5x=0-10`
`\Leftrightarrow 5x=-10`
`\Leftrightarrow x=-10 \div 5`
`\Leftrightarrow x=-2`
Vậy, nghiệm của đa thức là `x=-2.`
cho biểu thức P= ( \(\frac{2x-3}{4x^2-12x+5}+\frac{2x-8}{13x-2x^2-20}-\frac{3}{2x-1}\))\(:\frac{21+2x-8x^2}{4x^2+4x-3}+1\)
a/ rút gọn
b/ tìm giá trị của P khi giá trị tuyệt đối của x =1/2
c/ tìm giá trị nguyên của xđể P \(\in\)Z
d/ tìm x để P >0
Dùng định nghĩa hai phân thức bằng nhau, hãy tìm đa thức A trong mỗi đẳng thức sau :
a) \(\dfrac{A}{2x-1}=\dfrac{6x^2+3x}{4x^2-1}\)
b) \(\dfrac{4x^2-3x-7}{A}=\dfrac{4x-7}{2x+3}\)
c) \(\dfrac{4x^2-7x+3}{x^2-1}=\dfrac{A}{x^2+2x+1}\)
d) \(\dfrac{x^2-2x}{2x^2-3x-2}=\dfrac{x^2+2x}{A}\)
Cho \(Q=\left(\frac{2x-x^2}{2x^2+8}-\frac{2x^2}{x^3-2x^2+4x-8}\right)\left(\frac{2}{x^2}+\frac{1-x}{x}\right)\)
a)Rút gọn Q
b) Tìm x nguyên để Q nguyên