Cho phương trình (m-1)x2 +2(m+2)x +mx -2 =0
Tìm các giá trị của m để phương trình có hai nghiệm phân biệt
tìm các giá trị của m sao cho phương trình : \(\left(m-1\right)x^4-mx^2+m^2-1=0\)có 3 nghiệm phân biệt
Tìm các giá trị của m để phương trình sau có đúng 2 nghiệm phân biệt :
\(x^3-m\left(x+1\right)+1=0\).
Tập hợp tất cả các giá trị của tham số m để phương trình m - 1 x 2 + 2 x - 3 = 0 có hai nghiệm phân biệt là
A. ℝ = - 1
B. 2 3 ; + ∞
C. - ∞ ; 2 3
D. 2 3 ; 1 ∪ 1 ; + ∞
Tìm m để phương trình \(x^2-x+m^2-6=0\) có hai nghiệm \(x_1,x_2\) thỏa mãn \(2018x_1+2019x_2=2020\) Tích các giá trị của m tìm được là
Cho phương trình : x2 - 2 (m - 2)x - 2m = 0 ( x là ẩn số ).
a) Chứng tỏ phương trình trên luôn có 2 nghiệm phân biệt x1, x2 .
b) Tìm giá trị của m để 2 nghiệm của phương trình thoả hệ thức x2 - x1 = x12
a) Ta xét :
\(\Delta'=\left(m-2\right)^2+2m=m^2-2m+4=\left(m-1\right)^2+3\ge3>0\)
Vì \(\Delta'>0\)nên phương trình trên luôn có hai nghiệm phân biệt.
b) Dễ thấy : x1<x2 nên ta có :
\(x_1=\frac{2\left(m-2\right)-\sqrt{\left(m-1\right)^2+3}}{2}=m-2-\sqrt{\left(m-1\right)^2+3}\) ; \(x_2=\frac{2\left(m-2\right)+\sqrt{\left(m-1\right)^2+3}}{2}=m-2+\sqrt{\left(m-1\right)^2+3}\)
\(x_2-x_1=x_1^2\Leftrightarrow2\sqrt{\left(m-1\right)^2+3}=\left(m-2-\sqrt{\left(m-1\right)^2+3}\right)^2\)
\(\Leftrightarrow\left(m-2\right)^2+\left(m-1\right)^2+3-2\left(m-2\right)\sqrt{\left(m-1\right)^2+3}=2\sqrt{\left(m-1\right)^2+3}\)
\(\Leftrightarrow m=2\)
Vậy m = 2
cho phương trình
\(x^2-2mx+m^2-1=0\)
a) chứng minh rằng: phương trình luôn có 2 nghiệm phân biệt với mọi m
b) gọi x1, x2 là 2 nghiệm của phương trình. Tìm các giá trị của m sao cho \(x1^2+2mx2+m^2-5<0\)
giúp mình nha. Mình đang cần gấp
a) đenta phẩy=m^2-m^2+1>0
=>.........................
Tìm tất cả các giá trị nguyên của tham số m để phương trình:
\(mx^2-\left(1-2m\right)x+m-2=0^{\left(1\right)}\) có nghiệm là số hữu tỉ
(1-2m)2 - 4m(m-2) >0
1-4m +4m2-4m2 +8m >0
4m +1 >0
m > -1/4
với m> -4 thì đa thức co nghiệm là số hữu tỷ, không lẽ bn học trg chuyên mà không hiểu?
Tìm tất cả các giá trị nguyên của tham số m để phương trình:
\(mx^2-\left(1-2m\right)x+m-2=0^{\left(1\right)}\) có nghiệm là số hữu tỉ
Cho hệ phương trình x+my=m+1 mx+y=3m-1 Tìm giá trị của m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y
tìm tất cả các giá trị của tham số m để phương tình sau có 3 nghiệm phân biệt lập thành một cấp số nhân: x3 -(m+3)x2+(3m+2)x-2m=0
x^3-x^2(m+3)+x(3m+2)-2m=0
=>(x-1)(x^2-(m+2)x+2m)=0
=>x=1 hoặc x^2-(m+2)x+2m=0
Để PT có 3 nghiệm thì (m+2)^2-4*2m>0 và 1^2-(m+2)+2m<>0
=>m<>1 và m<>2
=>x2=(m+2-m+2)/2=2 và x3=(m+2+m-2)/2=m
Để tạo thành cấp sô nhân thì
x1<x2<m hoặc m<x1<x2 hoặc x1<m<x2
=>m*1=2^2 hoặc 2m=1 hoặc m^2=2
=>m=4 hoặc m=1/2 hoặc m=căn 2