gọi \(x_1,x_2\) là nghiệm của phương trình \(x^2-5x-m^2+m+6\) Tìm m để \(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}=\dfrac{3}{2}\) Tổng
các giá trị của m tìm được là
Cho hệ phương trình x+my=m+1 mx+y=3m-1 Tìm giá trị của m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y
Tìm m để phương trình \(\dfrac{2}{x-m}-\dfrac{5}{x+m}=1\)( x là ẩn số ) có 1 nghiệm bằng 3. Tổng các giá trị m tìm được bằng :
cho phương trình \(x^2-4x+m+1=0\) với mlaf tham số. tìm các giá trị của m để phương trình (1) có hai nghiệm x1x2thảo mãn
(x1-x2)2=4
cho phương trình x^2+6x+m=0
a) tìm m để phương trình có 2 nghiệm phân biệt
b) xác định m để phương trình có 2 nghiệm x1:x2 thỏa mãn x1=2x2
Cho hệ phương trình:
\(\hept{\begin{cases}\left(m+1\right)\cdot x+m\cdot y=2\cdot m-1\\m\cdot x-y=m^2-2\end{cases}}\)
Tìm các giá trị của m để hệ phương trình có nghiệm thoả mãn x*y lớn nhất.
Tìm các giá trị của m để phương trình sau có đúng 2 nghiệm phân biệt :
\(x^3-m\left(x+1\right)+1=0\).
Tìm các giá trị của m để phương trình sau có nghiệm :
\(\sqrt{2x^2+\left(m-4\right)x+3}=x-2\) .
Cho phương trình bậc hai ẩn x:
\(x^2+m\text{x}+2m-4=0\)
a) Biết phương trình có một nghiệm x1=3. Hãy tính nghiệm còn lại x2 và m
b) Gọi x1 x2 là hai nghiệm phân biệt của phương trình. Tìm giá trị nguyên dương của m để biểu thức \(A=\frac{x_1x_2+3}{x_1+x_2}\)