Tìm m để \(-2x^2+4x-2< 0\) có nghiệm
-2x^2+4x-3m+1=0 Tìm m để phương trình có 2 nghiệm phân biệt thuộc [-5;3]
Cho phương trình \(2x^2-4x+m-3=0\)
a). Giải phương trình với m = -4
b). Tìm m để phương trình có hai nghiệm trái dấu
c). Tìm m để phương trình có hai nghiệm cùng dấu
d). Tìm m để phương trình có hai nghiệm phân biệt
e). Tìm m để phương trình có một nghiệm bằng -3. Tìm nghiệm kia ?
Đáp án:
m=0m=0 hoặc x2=−ca=3m+13x2=−ca=3m+13
+) Xét ⇔3.(−1)−5.3m+13=6⇔3.(−1)−5.3m+13=6
⇔−15m+53=9⇔−15m+53=9
⇔15m+5=−27⇔15m+5=−27
⇔15m=−32⇔15m=−32
x1=3m+13; x2=−1x1=3m+13; x2=−1
Theo giả thiết:
m=−3215
tìm m để pt có nghiệm thuộc \(\left[-1;1\right]\)
x^4+2x^3+5x^2+4x-1-m=0
\(x^4+2x^3+5x^2+4x-1-m=0\)
\(\Leftrightarrow\left(x^2+x\right)^2+4\left(x^2+x\right)-1-m=0\left(1\right)\)
\(đặt:x^2+x=t\ge\dfrac{-\Delta}{4a}=-\dfrac{1}{4}\)
\(\left(1\right)\Leftrightarrow t^2+4t-1-m=0\) có nghiệm trên \([-\dfrac{1}{4};\text{+∞})\)
\(f\left(t\right)=t^2+4t-1=m\)
\(f\left(-\dfrac{b}{2a}\right)=-5\)
\(f\left(-\dfrac{1}{4}\right)=-\dfrac{31}{16}\Rightarrow m\ge-\dfrac{31}{16}\Rightarrow\left[{}\begin{matrix}t=\dfrac{-b}{2a}=-2\Rightarrow x^2+x+2=0\left(vô-nghiệm\right)\left(loại\right)\\\left\{{}\begin{matrix}t1=\dfrac{-4+\sqrt{20+4m}}{2}=-2+\sqrt{5+m}\\t2=\dfrac{-4-\sqrt{20+4m}}{2}=-2-\sqrt{5+m}\end{matrix}\right.\end{matrix}\right.\)
\(x^2+x=t1=-2+\sqrt{5+m}\Leftrightarrow f\left(x\right)=x^2+x+2=\sqrt{5+m}\) có nghiệm thuộc \(\left[-1;1\right]\)
\(\Rightarrow f\left(-\dfrac{b}{2a}\right)=\dfrac{7}{4}\)
\(f\left(-1\right)=2;f\left(1\right)=4\)
\(\Rightarrow\dfrac{7}{4}\le\sqrt{5+m}\le4\Leftrightarrow\dfrac{-31}{16}\le m\le11\)
\(x^2+x=t2=-2-\sqrt{5+m}\Leftrightarrow f\left(x\right)=x^2+x+2=-\sqrt{5+m}\)
có nghiệm trên \(\left[-1;1\right]\)
\(x^2+x+2>0\Rightarrow x^2+x+2=-\sqrt{5+m}< 0\left(vô-lí\right)\Rightarrow vô-nghiệm\forall m\)
\(\Rightarrow\dfrac{-31}{16}\le m\le11\) thì pt có nghiệm thuộc \(\left[-1;1\right]\)
Tìm tất cả các giá trị của tham số m để phương trình 4x+1- 2x+2 + m = 0 có nghiệm.
A. m ≤ 0
B. m ≥ 0
C. m ≤ 1
D. m ≥ 1
cho pt 2x^2=4x+5(m-1)=0. Tìm m để pt có 2 nghiệm phân biệt x1,x2 nhỏ hơn 3
Tìm tất cả các giá trị thực của tham số m để phương trình 4 x − 2 m .2 x + m + 2 = 0 có 2 nghiệm phân biệt.
A. − 2 < m < 2
B. m > − 2
C. m > 2
D. m < 2
Đáp án C
Phương pháp:
Đặt 2 x = t t > 0 , đưa về phương trình bậc 2 ẩn t, tìm điều kiện của phương trình bậc 2 ẩn t để phương trình ban đầu có 2 nghiệm phân biệt.
Cách giải: Đặt 2 x = t t > 0 khi đó phương trình trở thành t 2 − 2 m t + m + 2 = 0 *
Để phương trình ban đầu có 2 nghiệm phân biệt thì phương trình (*) có 2 nghiệm dương phân biệt.
Khi đó: Δ ' > 0 S > 0 P > 0 ⇔ m 2 − m − 2 > 0 2 m > 0 m + 2 > 0 ⇔ m > 2 m < − 1 m > 0 m > − 2 ⇒ m > 2
Chú ý và sai lầm: Rất nhiều học sinh sau khi đặt ẩn phụ thì quên mất điều kiện t > 0, dẫn đến việc chỉ đi tìm điều kiện đề phương trình (*) có 2 nghiệm phân biệt.
Cho phương trình \(2x^2-4x+5\left(m-1\right)=0\)
a) Tìm m để phương trình có hai nghiệm phân biệt nhỏ hơn 3
b) Tìm m để phương trình có hai nghiệm phân biệt lớn hơn 3
c) Tìm m để phương trình có hai nghiệm thỏa mãn \(x_1< 3< x_2\)
a: \(\text{Δ}=\left(-4\right)^2-4\cdot2\cdot5\left(m-1\right)\)
\(=16-40\left(m-1\right)\)
\(=16-40m+40\)
=-40m+56
Để phương trình có hai nghiệm phân biệt nhỏ hơn 3 thì
\(\left\{{}\begin{matrix}-40m+56>0\\\dfrac{4}{2}< 6\end{matrix}\right.\Leftrightarrow-40m>-56\)
hay m<7/5
b: Để phương trình có hai nghiệm phân biệt lớn hơn 3 thì
\(\left\{{}\begin{matrix}-40m+56>0\\\dfrac{4}{2}>6\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
tìm m để 1 nghiệm của phương trình 2x^2 - 13x + 2m = 0 gấp dôi 1 nghiệm của pt x^2 - 4x + m = 0
B6:Tìm các giá trị của m để pt sau có nghiệm \(x_1x_2\) thỏa mãn; \(x_1^2+x_2^2+3x_1x_2=2\)
a)\(x^2-4x+m-1=0\)
b)\(x^2-2x+m-1=0\)
Tìm tất cả các giá trị của tham số m để phương trình 9 . 9 x 2 - 2 x – ( 2 m + 1 ) 15 x 2 - 2 x + 1 + 4 m - 2 5 2 x 2 - 4 x + 2 = 0 có 2 nghiệm thực phân biệt
A. 1 2 < m < 1
B. m > 3 + 6 2 hoặc m < 3 - 6 2
C. m > 1 hoặc m < 1 2
D. 3 - 6 2 < m < 3 + 6 2
Dựa vào bảng biến thiên hàm f(x), ta thấy để phương trình (1) có 2 nghiệm thực x phân biệt thì phương trình (2) phải có duy nhất 1 nghiệm thuộc khoảng (0;1), nghiệm còn lại (nếu có) khác 1. Số nghiệm của (2) là số giao điểm của đồ thị hàm số y = 3 5 x - 1 2 và đường thẳng y = 2 m - 1 nên điều kiện của m thỏa mãn là 0 < 2 m - 1 < 1 ⇔ 1 2 < m < 1