Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Maéstrozs

Những câu hỏi liên quan
Kien Minh
Xem chi tiết
Kien Nguyen
2 tháng 11 2017 lúc 13:27

a) 4x(x - 5) - (x - 1)(4x - 3) = 5

4x2 - 20x - (4x2 - 3x - 4x + 3) = 5

4x2 - 20x - 4x2 + 3x + 4x - 3 = 5

-13x - 3 = 5

\(\Rightarrow\) -13x = 8

\(\Rightarrow\) x = \(\dfrac{-8}{13}\)

b) (3x - 4)(x - 2) = 3x(x - 9) - 3

3x2 - 6x - 4x + 8 = 3x2 - 27x - 3

3x2 - 10x + 8 - 3x2 + 27x + 3 = 0

17x + 11 = 0

\(\Rightarrow\) 17x = -11

\(\Rightarrow\) x = \(\dfrac{-11}{17}\)

c) x2 - 81 = 0

\(\Rightarrow\) x2 = 81

\(\Rightarrow\) x = \(\pm\) 9

d) 3x2 - 75 = 0

3(x2 - 25) = 0

\(\Rightarrow\) x2 - 25 = 0

\(\Rightarrow\) x2 = 25

\(\Rightarrow\) x = \(\pm\)5

e) x2 - 4x + 3 = 0

x2 - x - 3x + 3 = 0

(x2 - x) - (3x - 3) = 0

x(x - 1) - 3(x - 1) = 0

(x - 3)(x - 1) = 0

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

xin lỗi vì chữa đề

Jimin
Xem chi tiết
Đào Ngọc Lan
15 tháng 11 2018 lúc 15:53

/?/

Nguyễn Lê Phước Thịnh
20 tháng 11 2022 lúc 19:40

=>x(x^2-5x-14)=0

=>x(x-7)(x+2)=0

hay \(x\in\left\{0;7;-2\right\}\)

phanvan duc
Xem chi tiết
Trần Hồ Tú Loan
Xem chi tiết
huynh nguyen thuy linh
Xem chi tiết
Đỗ Thị Phương Anh
Xem chi tiết
Trần Quốc Lộc
23 tháng 10 2017 lúc 11:11

\(A=x^2-5x+12\\ A=x^2-5x+\dfrac{25}{4}+\dfrac{23}{4}\\ A=\left(x^2-5x+\dfrac{25}{4}\right)+\dfrac{23}{4}\\ A=\left[x^2-2\cdot x\cdot\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right]+\dfrac{23}{4}\\ A=\left(x-\dfrac{5}{2}\right)^2+\dfrac{23}{4}\\ Do\text{ }\left(x-\dfrac{5}{2}\right)^2\ge0\forall x\\ \Rightarrow A=\left(x-\dfrac{5}{2}\right)^2+\dfrac{23}{4}\ge\dfrac{23}{4}\forall x\\ \text{Dấu "=" xảy ra khi : }\\ \left(x-\dfrac{5}{2}\right)^2=0\\ \Leftrightarrow x-\dfrac{5}{2}=0\\ \Leftrightarrow x=\dfrac{5}{2}\\ \text{Vậy }A_{\left(Min\right)}=\dfrac{23}{4}\text{ }khi\text{ }x=\dfrac{5}{2}\)

\(B=2x^2-14x+5\\ \\ A=2x^2-14x+\dfrac{49}{2}-\dfrac{39}{2}\\ A=\left(2x^2-14x+\dfrac{49}{2}\right)-\dfrac{39}{2}\\ A=2\left(x^2-7x+\dfrac{49}{4}\right)-\dfrac{39}{2}\\ A=\left[x^2-2\cdot x\cdot\dfrac{7}{2}+\left(\dfrac{7}{2}\right)^2\right]-\dfrac{39}{2}\\ A=\left(x-\dfrac{7}{2}\right)^2-\dfrac{39}{2}\\ Do\text{ }\left(x-\dfrac{7}{2}\right)^2\ge0\forall x\\ \Rightarrow A=\left(x-\dfrac{7}{2}\right)^2-\dfrac{39}{2}\ge-\dfrac{39}{2}\forall x\\ \text{Dấu "=" xảy ra khi : }\\ \left(x-\dfrac{7}{2}\right)^2=0\\ \Leftrightarrow x-\dfrac{7}{2}=0\\ \Leftrightarrow x=\dfrac{7}{2}\\ \text{Vậy }B_{\left(Min\right)}=-\dfrac{39}{2}\text{ }khi\text{ }x=\dfrac{7}{2}\)

Trần Quốc Lộc
23 tháng 10 2017 lúc 11:18

\(B=2x^2-14x+5\\ B=2x^2-14x+\dfrac{49}{2}-\dfrac{39}{2}\\ B=\left(2x^2-14x+\dfrac{49}{2}\right)-\dfrac{39}{2}\\ B=2\left(x^2-7x+\dfrac{49}{4}\right)-\dfrac{39}{2}\\ B=2\left[x^2-2\cdot x\cdot\dfrac{7}{2}+\left(\dfrac{7}{2}\right)^2\right]-\dfrac{39}{2}\\ B=2\left(x-\dfrac{7}{2}\right)^2-\dfrac{39}{2}\\ \)

Do \(\left(x-\dfrac{7}{2}\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-\dfrac{7}{2}\right)^2\ge0\forall x\)

\(\Rightarrow B=2\left(x-\dfrac{7}{2}\right)^2-\dfrac{39}{2}\ge-\dfrac{39}{2}\forall x\)

Dấu \("="\) xảy ra khi :

\(\left(x-\dfrac{7}{2}\right)^2=0\\ \Leftrightarrow x-\dfrac{7}{2}=0\\ \Leftrightarrow x=\dfrac{7}{2}\)

Vậy \(B_{\left(Min\right)}=-\dfrac{39}{2}\) khi \(x=\dfrac{7}{2}\)

Do máy bị lỗi nên câu B bị trục trặc.

Mk xin lỗi.

Thiên Yết
Xem chi tiết
Phi Le
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 4 2021 lúc 20:27

a) Ta có: \(3x\left(7x-2\right)-14x+4=0\)

\(\Leftrightarrow3x\left(7x-2\right)-2\left(7x-2\right)=0\)

\(\Leftrightarrow\left(7x-2\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}7x-2=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}7x=2\\3x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{7}\\x=\dfrac{2}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{2}{7};\dfrac{2}{3}\right\}\)

Nguyễn Lê Phước Thịnh
14 tháng 4 2021 lúc 20:30

b) ĐKXĐ: \(x\notin\left\{0;3\right\}\)

Ta có: \(\dfrac{2x+1}{x-3}+\dfrac{5-3x}{x}=\dfrac{2x^2-15}{x^2-3x}\)

\(\Leftrightarrow\dfrac{x\left(2x+1\right)}{x\left(x-3\right)}+\dfrac{\left(5-3x\right)\left(x-3\right)}{x\left(x-3\right)}=\dfrac{2x^2-15}{x\left(x-3\right)}\)

Suy ra: \(2x^2+x+5x-15-3x^2+9x-2x^2+15=0\)

\(\Leftrightarrow-3x^2+15x=0\)

\(\Leftrightarrow-3x\left(x-5\right)=0\)

mà -3<0

nên x(x-5)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=5\left(nhận\right)\end{matrix}\right.\)

Vậy: S={5}

Nguyễn Nhã Linh
Xem chi tiết
lklos
24 tháng 8 lúc 15:48

a)

\(\left(x+2\right)^2-9=0\)

\(\Rightarrow\left(x+2\right)^2=9=3^2\)

\(\Rightarrow x+2=\pm3\)

\(\Rightarrow x=-5;1\)

b)

\(25x^2-10x+1=0\)

\(\left(5x\right)^2-2\cdot5x+1^2=0\)

\(\Rightarrow\left(5x+1\right)^2=0\)

\(\Rightarrow5x+1=0\)

\(\Rightarrow5x=-1;x=\dfrac{-1}{5}\)

c)

\(x^2+14x+49=0\)

\(\Rightarrow x^2+2\cdot7x+7^2=0\)

\(\Rightarrow\left(x+7\right)^2=0;x+7=0\)

\(\Rightarrow x=-7\)

d)

\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)

\(4x^2-4x+1+x^2+6x+9-5x^2+5\cdot49=0\)

\(\Rightarrow5x^2-5x^2-4x+6x+10+245=0\)

\(\Rightarrow2x+255=0\)

\(\Rightarrow2x=-255\)

\(\Rightarrow x=\dfrac{-255}{2}\)