(3x+9)*(11-x)=-2
6x-9x2-11
=-9x2+6x-11
=-(9x2+6x)-11
=-\([\)(9x2-2.x.3+9)-9\(]\)-11
=-\([\)(3x-9)2-9\(]\)-11
=-(3x-9)2+9-11
=-(3x-9)2-2
vậy ......
các bạn xem giúp với có đúng ko
tính
a)x+5=-2+11 b)-3x=-5+29
c)[x]-9=-2+17 d)[x-9]=-2+17
a)x+5= 9
x=9-5
x=4
b) -3x=24
x=24:-3
x=-8
c) [x]-9=15
[x]=15+9
[x]=24
x=24
d)[x-9]=-2+17
[x-9]=15
[x]=15+9
[x]=24
x=24
a) \(x+5=-2+11\) b)\(-3x=5+29\)
\(\Rightarrow x=-2+11-5\) \(\Rightarrow-3x=24\)
\(\Rightarrow x=4\) \(\Rightarrow-8\)
c)\(\left|x\right|-9=-2+17\) d)\(\left|x-9\right|=-2+17\)
\(\left|x\right|=15+9\) \(\left|x-9\right|=15\)
\(\left|x\right|=24\) \(x-9=15\) hoặc \(x-9=15\)
x = 24 hoặc - 24 \(x=24\) hoặc \(x=-6\)
tìm x biết |3x-2|+|3x-11|=9
Trường hợp 1: x<2/3
Pt sẽ là 2-3x+11-3x=9
=>-6x+13=9
=>-6x=-4
hay x=2/3(loại)
Trường hợp 2: 2/3<=x<11/3
Pt sẽ là 3x-2+11-3x=9
=>9=9(luôn đúng)
Trường hợp 3: x>=11/3
Pt sẽ là 3x-2+3x-11=9
=>6x-13=9
=>6x=22
hay x=11/3(nhận)
gpt \(x^{11}+3x^{10}+x^9+3x^8+x^7-3x^6-17x^5+3x^4+x^3+3x^2+x+3=0\)
\(x^{11}+3x^{10}+x^9+3x^8+x^7-3x^6-17x^5+3x^4+x^3+3x^2+x+3=0\)
\(\Leftrightarrow\left(x^{11}+2x^{10}+4x^9+6x^8+9x^7+6x^6+4x^5+2x^4+x^3\right)+\left(x^{10}+2x^9+4x^8+6x^7+9x^6+6x^5+4x^4+2x^3+x^2\right)-\left(5x^9+10x^8+20x^7+30x^6+45x^5+30x^4+20x^3+10x^2+5x\right)+\left(3x^8+6x^7+12x^6+18x^5+27x^4+18x^3+12x^2+6x+3\right)=0\)
\(\Leftrightarrow x^3\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)+x^2\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)-5\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)+3\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x^3+x^2-5x+3\right)\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)\left(x+3\right)\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+3\right)\left(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1\right)=0\)
Dễ thấy: \(x^8+2x^7+4x^6+6x^5+9x^4+6x^3+4x^2+2x+1>0\forall x\)
Nên \(\left[{}\begin{matrix}\left(x-1\right)^2=0\\x+3=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
biết x:(x^2 +x+1) =1:4.
tính A= (x^5 -4x^3-3x+9):(x^4 +3x^2 +11)Tìm x ∈ Z, biết:
a) x + 5 = -2 + 11
b) -3x = -5 + 29
c) | x | - 9 = -2 + 17
d) | x – 9 | = -2 + 17
a) x = 4
b) x = -8
c) | x | - 9 = -2 + 17
| x | = 15 + 9
| x | = 24
x = 24 hoặc x = -24
d) |x – 9| = -2 + 17
|x – 9| = 15
x – 9 = 15 hoặc x – 9 = -15
x = 24 hoặc x = -6
Tính giá trị biểu thức :
C = 1 / 3 - 3 / 5 + 5/7 - 7/ 9 + 9 /11 - 11 / 13 + 13 / 15 + 11/ 13 - 9 /11 + 7 / 9
D = 1/99 - 1 /99 x 98 - 1 / 98 x 97 - 1 /97 x 96 - ........ - 1 / 3x 2 - 1/ 2 x 1
Tìm x :
a) x (3x + 1) + (x -1)2 - (2x + 1)(2x -1) = 0
b) (x + 1)3 + (2 - x)3 - 9(x - 3)(x+3) = 0
c) (x - 1)3 - (x + 3)(x2 - 3x + 9) + 3x2 = 25
d) (x + 2)3 - ( x +1)(x2 - x + 1) - 6(x - 1)2 = 23
e) (x + 3)(x2 - 3x + 9) - x(x - 2)(x+2) + 11 = 0
f) x(x - 3) - x + 3 = 0
Lời giải:
a. $x(3x+1)+(x-1)^2-(2x+1)(2x-1)=0$
$\Leftrightarrow (3x^2+x)+(x^2-2x+1)-(4x^2-1)=0$
$\Leftrightarrow 3x^2+x+x^2-2x+1-4x^2+1=0$
$\Leftrightarrow (3x^2+x^2-4x^2)+(x-2x)+(1+1)=0$
$\Leftrightarrow -x+2=0$
$\Leftrightarrow x=2$
b.
$(x+1)^3+(2-x)^3-9(x-3)(x+3)=0$
$\Leftrightarrow [(x+1)+(2-x)][(x+1)^2-(x+1)(2-x)+(2-x)^2]-9(x-3)(x+3)=0$
$\Leftrightarrow 3[x^2+2x+1-(x-x^2+2)+(x^2-4x+4)]-9(x-3)(x+3)=0$
$\Leftrightarrow 3(3x^2-3x+3)-9(x^2-9)=0$
$\Leftrightarrow 9(x^2-x+1)-9(x^2-9)=0$
$\Leftrightarrow 9(x^2-x+1-x^2+9)=0$
$\Leftrightarrow 9(-x+10)=0$
$\Leftrightarrow -x+10=0\Leftrightarrow x=10$
c.
$(x-1)^3-(x+3)(x^2-3x+9)+3x^2=25$
$\Leftrightarrow (x^3-3x^2+3x-1)-(x^3+3^3)+3x^2=25$
$\Leftrightarrow x^3-3x^2+3x-1-x^3-27+3x^2=25$
$\Leftrightarrow (x^3-x^3)+(-3x^2+3x^2)+3x-28=25$
$\Leftrightarrow 3x-28=25$
$\Leftrightarrow x=\frac{53}{3}$
d.
$(x+2)^3-(x+1)(x^2-x+1)-6(x-1)^2=23$
$\Leftrightarrow (x^3+6x^2+12x+8)-(x^3+1)-6(x^2-2x+1)=23$
$\Leftrightarrow x^3+6x^2+12x+8-x^3-1-6x^2+12x-6=23$
$\Leftrightarrow (x^3-x^3)+(6x^2-6x^2)+(12x+12x)+(8-1-6)=23$
$\Leftrightarrow 24x+1=23$
$\Leftrgihtarrow 24x=22$
$\Leftrightarrow x=\frac{11}{12}$
e.
$(x+3)(x^2-3x+9)-x(x-2)(x+2)+11=0$
$\Leftrightarrow x^3+3^3-x(x^2-4)+11=0$
$\Leftrightarrow x^3+27-x^3+4x+11=0$
$\Leftrightarrow (x^3-x^3)+4x+(27+11)=0$
$\Leftrightarrow 4x+38=0$
$\Leftrightarrow x=\frac{-19}{2}$
f.
$x(x-3)-x+3=0$
$\Leftrightarrow x(x-3)-(x-3)=0$
$\Leftrightarrow (x-3)(x-1)=0$
$\Leftrightarrow x-3=0$ hoặc $x-1=0$
$\Leftrightarrow x=3$ hoặc $x=1$
2/3x +(4/5 x -11/15) = 5/9
\(\dfrac{2}{3}\)\(x\) + (\(\dfrac{4}{5}\)\(x\) - \(\dfrac{11}{15}\)) = \(\dfrac{5}{9}\)
\(\dfrac{2}{3}\)\(x\) + \(\dfrac{4}{5}\)\(x\) - \(\dfrac{11}{15}\) = \(\dfrac{5}{9}\)
(\(\dfrac{2}{3}+\dfrac{4}{5}\))\(x\) = \(\dfrac{5}{9}\) + \(\dfrac{11}{5}\)
\(\dfrac{22}{15}\)\(x\) = \(\dfrac{58}{45}\)
\(x\) = \(\dfrac{58}{45}\): \(\dfrac{22}{15}\)
\(x\) = \(\dfrac{29}{33}\)