Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 7 2021 lúc 17:36

Kẻ đường cao BH

Xét tứ giác ABHD có 

\(\widehat{BAD}=90^0\)

\(\widehat{ADH}=90^0\)

\(\widehat{BHD}=90^0\)

Do đó: ABHD là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:

\(BD^2=AB^2+AD^2\)

\(\Leftrightarrow AB^2+12^2=BD^2\)(1)

Ta có: ABHD là hình chữ nhật(cmt)

nên AD=BH(hai cạnh đối)

mà AD=12cm(gt)

nên BH=12cm

Áp dụng định lí Pytago vào ΔBDC vuông tại B, ta được:

\(DC^2=BD^2+BC^2\)

\(\Leftrightarrow BD^2+BC^2=25^2=625\)(2)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBDC vuông tại B có BH là đường cao ứng với cạnh huyền DC, ta được:

\(BD\cdot BC=BH\cdot DC\)

\(\Leftrightarrow BD\cdot BC=12\cdot25=300\)

hay \(BC=\dfrac{300}{BD}\)(3)

Thay (3) vào (2), ta được:

\(BD^2+\left(\dfrac{300}{BD}\right)^2=625\)

\(\Leftrightarrow\dfrac{BD^4+90000}{BD^2}=625\)

\(\Leftrightarrow BD^4-625BD^2+90000=0\)

\(\Leftrightarrow BD^4-400BD^2-225BD^2+90000=0\)

\(\Leftrightarrow\left(BD^2-400\right)\left(BD^2-225\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}BD=15\\BD=20\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}AB=9\left(cm\right)\\AB=16\left(cm\right)\end{matrix}\right.\)

Diện tích hình thang ABCD là:

\(S_{ABCD}=\dfrac{AB+CD}{2}\cdot AD=\left[{}\begin{matrix}\dfrac{9+25}{2}\cdot12=204\left(cm^2\right)\\\dfrac{9+16}{2}\cdot12=150\left(cm^2\right)\end{matrix}\right.\)

missing you =
3 tháng 7 2021 lúc 17:37

từ B hạ BE\(\perp DC\)

theo bài ra ABCD là hình thang \(=>AB//CD=>AB//DE\)

mà \(\angle\left(A\right)=\angle\left(D\right)=90^o\)=>chứng minh được ABED là hình chữ nhật

\(=>AD=BE=12cm\)

áp dụng hệ thức lượng \(=>BE^2=DE.EC< =>12^2=DE\left(25-DE\right)=>DE=16cm=AB\)

\(=>S\left(ABCD\right)=\dfrac{\left(AB+CD\right)BE}{2}=\dfrac{\left(16+25\right)12}{2}=246cm^2\)

 

hnamyuh
3 tháng 7 2021 lúc 17:38

Không tên
Xem chi tiết
Chanoppa
Xem chi tiết
Kim Phương Lê
Xem chi tiết
Đinh Thùy Dương
Xem chi tiết
Nguyễn Trần Khánh My
Xem chi tiết
Kiều Thu Hà
25 tháng 2 2016 lúc 21:47

nhiều bài thế

Mai Diệu Xuân
8 tháng 1 2018 lúc 22:34

Thế này chắc sáng mai chẳng xong mấtbatngo

Nguyễn Phương Thảo
9 tháng 1 2018 lúc 15:53

https://olm.vn/.../tim-kiem?...Hình+thang+ABCD...AB//CD...có+AB=2cm+CD=5cm...

Lê Khánh Ngân
Xem chi tiết
Ngân Nguyễn Khánh
Xem chi tiết
Cô Hoàng Huyền
21 tháng 5 2018 lúc 11:25

Xét tam giác ABD và tam giác BDC có:

\(\widehat{BAD}=\widehat{DBC}=90^o\)

\(\widehat{ABD}=\widehat{BDC}\)   (Cùng phụ với góc \(\widehat{ADC}\)  )

\(\Rightarrow\Delta ABD\sim\Delta BDC\left(g-g\right)\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow BD^2=\frac{AB}{DC}\)

Xét tam giác vuông ABD, áp dụng định lý Pi-ta-go ta có:

      \(DB^2=AB^2+AD^2=2^2+4^2=20\)

Suy ra \(2=\frac{20}{DC}\Rightarrow DC=10cm\)

Xét tam giác vuông BDC, áp dụng định lý Pi-ta-go ta có:

  \(BC^2=DC^2-BD^2=10^2-20=80\Rightarrow BC=\sqrt{80}\left(cm\right)\)

Vậy chu vi hình thang vuông bằng:    2 + 4 + 10 + \(\sqrt{80}=14+\sqrt{80}\left(cm\right)\)

Diện tích hình thang bằng: \(\frac{\left(2+10\right).4}{2}=24\left(cm^2\right)\)

Bich Ngoc Nguyen thi
21 tháng 5 2018 lúc 12:16

20cm2

Nguyễn Phúc Khánh
Xem chi tiết

Đáp án: 

`hat{ABC} = 135^0`

`hat{C} = 45^0`

Giải thích các bước giải:

– Kẻ `OH ⊥ DC = {H}` 

– Xét tứ giác `ABHD` có: 

`AD = AB` 

`hat{A} = hat{D} = 90^0`

`=> ABHD` là hình vuông

`=>` {DH=HC=2(cm)AD=BH=2(cm) 

Xét `ΔBHC` vuông cân tại `H` có: 

`hat {HBC} = hat{C} = 45^0` 

`=> hat{ABC} = hat{HBC} + hat{ABH} = 45^0 + 90^0 = 135^0`

Khách vãng lai đã xóa
ミ★ғox♥️ʀồɴԍ★彡乡
3 tháng 10 2021 lúc 20:10

Kẻ BH ⊥ CD

Ta có: AD ⊥ CD ( Vì ABCD là hình thang vuông có ∠∠A = ∠∠D = 900900 )

Suy ra: BH // AD

Hình thang ABHD có hai cạnh bên song song nên HD = AB và BH = AD

AB = AD = 2cm (gt)

⇒ BH = HD = 2cm

CH = CD – HD = 4 – 2 = 2 (cm)

Suy ra: Δ∆BHC vuông cân tại H

⇒ ∠∠C = 450450

∠∠B + ∠∠C = 18001800 (2 góc trong cùng phía bù nhau) ⇒ ∠∠B = 18001800 – 450450 = 1350

Khách vãng lai đã xóa
ミ★ғox♥️ʀồɴԍ★彡乡
3 tháng 10 2021 lúc 20:12

Kẻ BH ⊥ CD

Ta có: AD ⊥ CD ( Vì ABCD là hình thang vuông có  ∠ A =  ∠ D = 90 0  )

Suy ra: BH // AD

Hình thang ABHD có hai cạnh bên song song nên HD = AB và BH = AD

AB = AD = 2cm (gt)

⇒ BH = HD = 2cm

CH = CD – HD = 4 – 2 = 2 (cm)

Suy ra: ∆ BHC vuông cân tại H

HT

Khách vãng lai đã xóa
Trang Lê
Xem chi tiết