tìm x, biết :
12x +156=144
-4x+6= -12
0x =4x -12
Tìm x biết:
1)25/12x+11/15=9/10
2)3/2x-2/5=1/3x-1/4
3)29/12[x]-5/6=3/8
4)[4x+3/4]-5/4=2
5)2x+2x+3=144
1) \(\frac{25}{12}.x+\frac{11}{15}=\frac{9}{10}\)
=> \(\frac{25}{12}.x=\frac{9}{10}-\frac{11}{15}\)
=> \(\frac{25}{12}.x=\frac{1}{6}\)
=> \(x=\frac{1}{6}:\frac{25}{12}\)
=> \(x=\frac{2}{25}\)
Vậy \(x=\frac{2}{25}\).
3) \(\frac{29}{12}.\left[x\right]-\frac{5}{6}=\frac{3}{8}\)
=> \(\frac{29}{12}.\left[x\right]=\frac{3}{8}+\frac{5}{6}\)
=> \(\frac{29}{12}.x=\frac{29}{24}\)
=> \(x=\frac{29}{24}:\frac{29}{12}\)
=> \(x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\).
4) \(\left[4x+\frac{3}{4}\right]-\frac{5}{4}=2\)
=> \(\left[4x+\frac{3}{4}\right]=2+\frac{5}{4}\)
=> \(4x+\frac{3}{4}=\frac{13}{4}\)
=> \(4x=\frac{13}{4}-\frac{3}{4}\)
=> \(4x=\frac{5}{2}\)
=> \(x=\frac{5}{2}:4\)
=> \(x=\frac{5}{8}\)
Vậy \(x=\frac{5}{8}\).
5) 2x + 2x+3 = 144
⇔ 2x + 2x . 23 = 144
⇔ 2x . (1 + 23) = 144
⇔ 2x . 9 = 144
⇔ 2x = 144 : 9
⇔ 2x = 16
⇔ 2x = 24
=> x = 4
Vậy x = 4.
Chúc bạn học tốt!
Tìm x:
a)(x-6)2-(x+6)2=12
b)36x2-12x+1=81
c)x2-4x-12=0
d)x2-5x-6=0
`a)(x-6)^2-(x+6)^2=12`
`<=>(x-6-x-6)(x-6+x+6)=12`
`<=>-12.2x=12`
`<=>2x=-1`
`<=>x=-1/2`
Vậy `x=-1/2`
`b)36x^2-12x+1=81`
`<=>(6x-1)^2=81`
`<=>(6x-1-9)(6x-1+9)=0`
`<=>(6x-10)(6x+8)=0`
`<=>(3x-5)(3x+4)=0`
`<=>` \(\left[ \begin{array}{l}x=\dfrac53\\x=-\dfrac43\end{array} \right.\)
`c)x^2-4x-12=0`
`<=>x^2-6x+2x-12=0`
`<=>x(x-6)+2(x-6)=0`
`<=>(x-6)(x+2)=0`
`<=>` \(\left[ \begin{array}{l}x=-2\\x=6\end{array} \right.\)
`d)x^2-5x-6=0`
`<=>x^2-6x+x-6=0`
`<=>x(x-6)+x-6=0`
`<=>(x-6)(x+1)=0`
`<=>` \(\left[ \begin{array}{l}x=6\\x=-1\end{array} \right.\)
11, (6x+5)2(3x+2)(x+1) - 35
12, (4x+1)(12x-1)(3x+2)(x+1)-4
13, (x2+4x+3)(x2+12x+35)+15
14, (x2+13x+40)(x2+15x+54) - 40
15, (x2- 6x - 16)(x2 - 4x - 21) - 144
tìm x biết:
a)3x^2+12x=0
b)(-2x).(-4x)+28=100
c)5x.(-x)^2+1=6
d)4x^3=4x
a) 3x2 + 12x =0
<=> 3x( x+ 4)=0
<=> \(\orbr{\begin{cases}3x=0\\x+4=0\end{cases}}\) <=>\(\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)
d) \(4x^3=4x\)
<=> \(4x^3-4x=0\)
<=> 4x( x2 -1) =0
<=> 4x ( x - 1) ( x+ 1) =0
<=> 4x=0 hoac x-1=0 hoac x+1=0
<=> x=0 hoac x=1 hoac x=-1
Tìm x
x^2 - 4x - 12 = 0
4x^2 + 4x - 24 = 0
8x^3 - 12x^2 + 6x - 1 = 0
tìm x, y biết:
4x2+4y2+4xy-12x-12y+12=0
Giải các phương trình sau: 1)√3x²-√12=0
2)√(x-3)²=9
3)√4x²+4x+1=6
4)√(2x-1)²=3
5)√(x-3)²=3-x 6)√4x²-20x+25+2x=5
7)√1-12x+36x²=5
1.
$\sqrt{3x^2}-\sqrt{12}=0$
$\Leftrightarrow \sqrt{3x^2}=\sqrt{12}$
$\Leftrightarrow 3x^2=12$
$\Leftrightarrow x^2=4$
$\Leftrightarrow (x-2)(x+2)=0\Leftrightarrow x=\pm 2$
2.
$\sqrt{(x-3)^2}=9$
$\Leftrightarrow |x-3|=9$
$\Leftrightarrow x-3=9$ hoặc $x-3=-9$
$\Leftrightarrow x=12$ hoặc $x=-6$
3.
$\sqrt{4x^2+4x+1}=6$
$\Leftrightarrow \sqrt{(2x+1)^2}=6$
$\Leftrightarrow |2x+1|=6$
$\Leftrightarrow 2x+1=6$ hoặc $2x+1=-6$
$\Leftrightarrow x=\frac{5}{2}$ hoặc $x=\frac{-7}{2}$
d) (12x -1) (2x -3);e) (x -7)(x -5);f) (x -12)(x + 12)(4x -1)d) (12x -1) (2x -3);e) (x -7)(x -5);f) (x -12)(x + 12)(4x -1)
\(d,=24x^2-38x+3\\ e,=x^2-12x+35\\ f,=\left(x^2-144\right)\left(4x-1\right)=4x^3-x^2-576x+144\)
d: \(\left(12x-1\right)\left(2x-3\right)\)
\(=24x^2-36x-2x+3\)
\(=24x^2-38x+3\)
Tìm x , biết :
a. x(x - 2) - 7x + 14 = 0
b, x2(x - 3) + 12 - 4x = 0
c. x2 + 12x - 13 = 0
d. 4x2 - 4x = 8
e. x2 - 6x = 1
a) \(x\left(x-2\right)-7x+14=0\)
\(\Leftrightarrow x\left(x-2\right)-7\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=7\end{cases}}\)
b) \(x^2\left(x-3\right)+12-4x=0\)
\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x^2=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\pm2\end{cases}}\)
c) \(x^2+12x-13=0\)
\(\Leftrightarrow\left(x^2-x\right)+\left(13x-13\right)=0\)
\(\Leftrightarrow x\left(x-1\right)+13\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+13\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-13\end{cases}}\)
d) \(4x^2-4x=8\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
e) \(x^2-6x=1\)
\(\Leftrightarrow\left(x-3\right)^2=10\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=\sqrt{10}\\x-3=-\sqrt{10}\end{cases}}\Rightarrow\orbr{\begin{cases}x=3+\sqrt{10}\\x=3-\sqrt{10}\end{cases}}\)
a) x( x - 2 ) - 7x + 14 = 0
<=> x( x - 2 ) - 7( x - 2 ) = 0
<=> ( x - 2 )( x - 7 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=7\end{cases}}\)
b) x2( x - 3 ) + 12 - 4x = 0
<=> x2( x - 3 ) - 4( x - 3 ) = 0
<=> ( x - 3 )( x2 - 4 ) = 0
<=> \(\orbr{\begin{cases}x-3=0\\x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\pm2\end{cases}}\)
c) x2 + 12x - 13 = 0
<=> x2 - x + 13x - 13 = 0
<=> x( x - 1 ) + 13( x - 1 ) = 0
<=> ( x - 1 )( x + 13 ) = 0
<=> \(\orbr{\begin{cases}x-1=0\\x+13=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-13\end{cases}}\)
d) 4x2 - 4x = 8
<=> 4( x2 - x ) = 8
<=> x2 - x = 2
<=> x2 - x - 2 = 0
<=> x2 + x - 2x - 2 = 0
<=> x( x + 1 ) - 2( x + 1 ) = 0
<=> ( x + 1 )( x - 2 ) = 0
<=> \(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
e) x2 - 6x = 1
<=> x2 - 6x + 9 = 1 + 9
<=> ( x - 3 )2 = 10
<=> ( x - 3 )2 = ( ±√10 )2
<=> \(\orbr{\begin{cases}x-3=\sqrt{10}\\x-3=-\sqrt{10}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3+\sqrt{10}\\x=3-\sqrt{10}\end{cases}}\)