Tìm x, y biết
a) \(x^2-5x+6=0\)
b)\(x^2-6y^2=1\) (x,y là số nguyên tố )
Bài 1:
Tìm các số nguyên x,y biết;
a,x.(2y-1)=6y+5 b,xy-2x+3y=4
Bài 2: Tìm các số tự nhiên x,n và số nguyên tố p,q biết:
a,pq+13;5p+q đều là số nguyên tố
b,(x^2+4x+32)(x+4)
a) tìm hai số nguyên tố x,y sao cho :x2-6y2=1
b)tính tổng các số nguyên tố x biết 2 [x-2]=8 (dấu[] là giá trị tuyệt đối)
\(x^2-6y^2=1\)
⇒ \(x^2-1=6y^2\)
⇒ \(y^2=\dfrac{x^2-1}{6}\)
Nhận thấy y2 ∈ Ư của x2 - 1⋮6
⇒ y2 là số chẵn
Mà y là số nguyên tố → y = 2
Thay vào, ta có:
\(x^2-1=4\cdot6=24\)
⇒ \(x^2=25\) → x = 5
Vậy x=5 ; y=2
xin tích
Để giải phương trình $x^2 - 6y^2 = 1$ với $x, y$ là số nguyên tố, ta sử dụng phương pháp giải bằng phương pháp Pell như sau: Phương trình có dạng $x^2 - 6y^2 = 1$, tương đương với phương trình $x^2 - 6y^2 - 1 = 0$. Ta cần tìm nghiệm nguyên của phương trình này, có dạng $(x, y)$. Giả sử $x_1, y_1$ là một nghiệm của phương trình, ta có thể tìm được một nghiệm khác bằng cách sử dụng công thức sau: $x_{n+1} = 5x_n + 12y_n$ $y_{n+1} = 2x_n + 5y_n$ Với $x_1 = 7, y_1 = 2$, ta có thể tìm được các giá trị $x$ và $y$ bằng cách lần lượt tính các giá trị $x_n$ và $y_n$ bằng công thức trên. $x_1 = 7, y_1 = 2$ $x_2 = 47, y_2 = 14$ $x_3 = 337, y_3 = 100$ $x_4 = 2387, y_4 = 710$ $x_5 = 16807, y_5 = 3982$ Vậy $(x, y) = (16807, 3982)$ là một nghiệm của phương trình $x^2 - 6y^2 = 1$, với $x$ và $y$ đều là số nguyên tố.
Ttìm cặp số x, y nguyên thỏa mãn 5x^2 +y^2 -2xy+2x-6y+1<0
Tìm cặp số x,y thỏa 5x^2 +2y+y^2 -4x-40=0
Giải hệ phương trình sau:
xy(x-y)=2
9xy(3x-y)+6=26x^3 -2y^3
5x2+2y+y2-4x-40=0
△=(-4)2-4.5.(2y+y2-40)
△=16-40y-20y2+800
△=-(784+40y+20y2)
△=-(32y+8y+16y2+4y2+16+4+764)
△=-[(4y+4)2+(2y+2)2+764]<0
=>PHƯƠNG TRÌNH VÔ NGHIỆM.
Tìm x ; y là số nguyên tố : x^2 -6y^2=1
X=5 Y=2
Thử lại :
52-6.22=25-24=1
Vậy X=5 và Y=2
\(x^2\) - 6y2 = 1
\(x^2\) - 1 = 6y2
(\(x\) - 1).(\(x\) + 1) = 6.y2
vì \(x\); y là đều số nguyên tố nên
\(x-1\) = 6; y2 = \(x\) + 1
hoặc \(x\) + 1 = 6; y2 = \(x\) - 1
TH1: \(x\) - 1= 6 ⇒ \(x\) = 6 + 1 ⇒ \(x\) = 7
Thay \(x\) = 7 vào y2 = \(x\) + 1 ⇒ ⇒ y2 = 7 + 1
y2 =8 (loại vì số chính phương không thể có tận cùng là 8)
TH2: \(x\) + 1 = 6 ⇒ \(x\) = 6 - 1 ⇒ \(x\) = 5 Thay \(x\) = 5 vào biểu thức
y2 = \(x\) - 1 ⇒ y2 = 5 - 1 ⇒ y2 = 4 ⇒ y = -2; 2
Vì y là só nguyên tố nên y = 2
Vậy các cặp số nguyên tố \(x\); y thỏa mãn đề bài là: (\(x\); y) = (5; 2)
Tìm 2 số nguyên tố x và y biết x^2-6y^2=1
Tìm cặp số nguyên x, y thỏa mãn:
a) x=6y và lxl-lyl=60 b) lxl+lyl<2 c) (x+1)^2+(y+1)^2+(x-y)^2=2
d) xy+5x-7y=35 e) xy+2x-3y=9 f) xy-2x+5y-12=0 ^_^
Tìm các cặp số nguyên x,y biết:
a)x^2 + y^2 +4x +6y + 12<0 b)5x^2 + y^2 +1 nhỏ hơn hoặc bằng xy+x+2y
Ai làm nhanh mình tick cho nhé